visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
seminar Date  
Date & Time May 13 (Fri.) 4 PM 
Venue E6. #1501(1st fl.) 
Speaker Dr. Hosub Jin, Dept. of Physics, UNIST 

Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics

 

Dr. Hosub Jin, Dept. of Physics, UNIST
May 13 (Fri.) 4 PM, E6. #1501(1st fl.)

 

Graphene has been drawn great attention, triggering the outburst of two dimensional materials research. Among various capable applications, graphene was suggested as a platform for topological electronics; following the finding of the quantum spin Hall pahse, diverse topological phases have been suggested in graphene via generating the mass-gap at the Dirac point. To be more optimal for topological electronics applications, however, the large spin-orbit coupling and/or the bandgap tunability are necessary, which are hardly accessible in graphene. In an attempt to find the practical candidates, we suggest that the (111)-oriented BaBiO3 bilayer pervskite oxides sandwiched by large gap insulators can provide an ideal platform for topological electronics. The Dirac fermion and its various topological phases in this heterostructure emerge from the confluence of three research areas in condensed matter physics: Dirac materials, oxide heterostructures, and topological electronic structures. By taking account of the charge, spin, valley and pseudospin degrees of freedom of the Dirac fermion and the abundant order parameters of oxide perovskites, we may find a zoo of topological quantum matters in the oxide herostructures.

 

Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
44   #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
43   #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
42   #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
41   #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
40   #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
39   #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
»   E6. #1501(1st fl.)  Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics
37   #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
36   #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
35   #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
34   E6-2. #2502(2nd fl.)  Entanglement probe of two-impurity Kondo physics
33   E6-2, #5318  Development of a Rogowski Coil as a new beam position monitor
32   May 19 (Thu) 4PM  Nonlinear/quantum optical effect in silicon nano-photonics
31   #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
30   #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
29   E6-2. 2nd fl. #2501  Ultrafast X-ray Studies on Dynamics Matter in Extreme Conditions
28   #1323(E6-2 1st fl.)  Time scale dependent dynamics in InAs/InP quantum dot gain media
27   KAIST Natural Science Building (E6-2), RM #4314  Radio frequency engineering
26   E6-2. #1323(1st fl.)  Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density
25   #1323(E6-2. 1st fl.)  Let there be topological superconductors