visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
seminar Date  
Date & Time Sep. 29 (Thu), 4:00 PM 
Venue E6-2. #2501(2nd fl.) 
Speaker Dr. Minu Kim, Institute for Basic Science, Seoul National University 

Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?

 

Sep. 29 (Thu), 4:00 PM, E6-2. #2501(2nd fl.)
Dr. Minu Kim, Institute for Basic Science, Seoul National University

 

Recently, we found novel routes to experimentally control the phase diagram in the perovskite bismuthate BaBiO3 (BBO), the parent compound of several high-Tc oxide superconductors. Numerous experimental and theoretical studies have sought to gain insight into the mechanisms that control the physics of these bismuthates [1,2]; to date, however, only limited progress has been made in hole-doped bulk samples. Here, we present our recent progress on exploration of the novel phase diagram of BBO via thickness and doping controls. We revealed that a minimum length scale to sustain a charge density wave order in BBO films by thickness control [3]. Furthermore, the electronic and structural properties of BBO were strongly dependent on oxygen deficiency, disclosed by the combination of in situ spectroscopic techniques and first-principles calculations. Our approaches introduce independent control parameters to explore the BBO phase diagram, and may also provide a useful guideline to study the recently predicted topological phases in electron-doped bismuthates [4].

 

[1] A. W. Sleight, J. L. Gillson, P. E. Bierstedt, Solid State Commun. 17, 27 (1975)
[2] R. J. Cava et al., Nature 328, 814 (1988)
[3] G. Kim et al., Phys. Rev. Lett. 115, 226402 (2015)
[4] B. Yan et al., Nat. Phys. 9, 709 (2013)

 

Contact: MyungJoon Han, Physics Dept., (mj.han@kaist.ac.kr)

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
84   E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
83   E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors
82   BK21 Conference Room (#1318, E6-2)  Welcome to Nature Photonics
81   #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
»   E6-2. #2501(2nd fl.)  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
79   #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
78   #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
77   #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
76   E6-2, #1323  What's Beyond the Standard Model? Lessons from Run I and what might come in Run II
75   #1323(E6-2. 1st fl.)  Isostatic magnetism
74   #1323(E6-2. 1st fl.)  Isostatic magnetism
73   #5318(E6-2, 5th fl.)  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
72   Rm. 1318  [2015/07/16, 4PM] Dr. Kyung-Han Hong (MIT), Next-generation ultrafast laser technology for nonlinear optics and strong-field physics
71   E6-2. 1st fl. #1501  Topological phases of matter in nonequilibrium: Topology of the Wannier-Stark ladder
70   E6-2, #1323  Quantum spin liquid in the 1/3 depleted triangular lattice Ba3(Ru1-xIrx)Ti2O9
69   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
68   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
67   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
66   #1323(E6-2, 1st fl.)  Understanding 3D tokamak physics towards advanced control of toroidal plasma
65   E6-2. 1st fl. #1501  Interference of single charged particles without a loop and dynamic nonlocality