visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
seminar Date  
Date & Time Mar. 2nd (Thu), 4:00 p.m 
Venue #1323(E6-2. 1st fl.) 
Speaker Dr. Jonathan Denlinger, Lawrence Berkeley National Lab 

“Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”

 

 Dr. Jonathan Denlinger, Lawrence Berkeley National Lab

 Mar. 2nd (Thu), 4:00 p.m , #1323(E6-2. 1st fl.)

 

The comparison of angle-resolved photoemission (ARPES) to dynamical mean field theory (DMFT) electronic structure calculations is reviewed for three correlated electron systems of V2O3, CeCoIn5 and SmB6. The electronic structure of metallic phase V2O3, key to understanding its various metal-insulator transitions with temperature, doping and pressure, is revealed by ARPES to have a d-orbital band filling that is inconsistent with a 2007 DMFT model of correlation-enhanced orbital polarization, but is thematically consistent with more recent DMFT calculations stressing full charge-self-consistency.

   The Kondo lattice system CeCoIn5 is shown to exhibit itinerant f-electron participation in the localized-like 3D Fermi surface topology consistent with the low energy scale description of DMFT calculations, and with a temperature-dependence that extends far above the transport coherence temperature of T*~45K. 

   Finally, the temperature-dependent evolution of the bulk 4f electronic structure of mixed-valent SmB6 revealed by ARPES and DMFT identifies an important role in f-p hybridization assistance to the metal-insulator transition (MIT) beyond the minimal two-band models of f-d hybridization.  The current status of the topological insulator scenario for the SmB6 in-gap surface states is also reviewed.

 

Contact: Yeong Kwan Kim (Tel. 2516, yeongkwan@kaist.ac.kr)

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
45   #1323(E6-2. 1st fl.)  Isostatic magnetism
44   #1323(E6-2. 1st fl.)  Let there be topological superconductors
43   #1323(E6-2. 1st fl.)  Electronic quasiparticles in the quantum dimer model
42   #1323(E6-2. 1st fl.)  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
41   #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
40   #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters
39   #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
38   #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
37   #1323(E6-2. 1st fl.)  Symmetry Protected Kondo Metals and Their Phase Transitions
36   #1323(E6-2. 1st fl.)  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
35   #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
34   #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
»   #1323(E6-2. 1st fl.)  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
32   #1323(E6-2. 1st fl.)  Isostatic magnetism
31   #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
30   #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters
29   #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
28   #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
27   #1323(E6-2. 1st fl.)  Symmetry Protected Kondo Metals and Their Phase Transitions
26   #1323(E6-2. 1st fl.)  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator