visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
seminar Date  
Date & Time 2015/12/17, 11:00AM 
Venue E4(KI Building), Maxtrix Hall (2nd fl.) 
Speaker Dr. Jung-Hoon Park (Purdue University) 

Wavefront engineering for in-vivo Deep brain imaging

 

Dec. 17(Thu) 11:00 AM, KI B/D, Matrix Hall, 2nd fl.
Dr. Jung-Hoon Park , School of Electric and Computer Sciences, Purdue University,USA

 

The brain is a unique organ which still holds many challenges that must be overcome for deeper understanding. The relation between the structure and function of the brain is still a big mystery due to the diversity in cell type and functional connections. In this respect, optical imaging holds unique advantages with its molecular specificity and high spatiotemporal resolution which allows simultaneous observation of both structure and function of the brain. However, deep brain imaging requires the light to be delivered efficiently through multiple scattering caused by the thick tissue. In this talk, I will describe our recent developments in wavefront engineering that overcome this barrier and enable high resolution large volume deep brain imaging and through-skull imaging of live mice.

Jung Hoon Park is a postdoctoral researcher in the School of Electrical and Computer Engineering at Purdue University. He received his PhD in physics from KAIST and conducted research at Janelia Research Campus prior to moving to Purdue with Dr. Meng Cui. His research interests focuses on building novel optical systems to enable high resolution deep tissue imaging, especially the brain.

 

Contact: Prof.YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
45   E6-2. #1323(1st fl.)  Low Dimensional Active Plasmonics and Electron Optics in Graphene
44   E6-2. #2501(2nd fl.)  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
43   E6-2. #2502(2nd fl.)  Entanglement probe of two-impurity Kondo physics
42   E6-2. 1st fl. #1318  Advanced Optical Materials and Devices at NRL
41   E6-2. 1st fl. #1322  A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space
40   E6-2. 1st fl. #1323  Confinement of Superconducting Vortices in Magnetic Force Microscopy
39   E6-2. 1st fl. #1323  “Hybrid quantum systems with mechanical oscillators”
38   E6-2. 1st fl. #1501  Topological phases of matter in nonequilibrium: Topology of the Wannier-Stark ladder
37   E6-2. 1st fl. #1501  Jan. Switching handedness of of chiral solitons in Z4 topological insulators
36   E6-2. 1st fl. #1501  Interference of single charged particles without a loop and dynamic nonlocality
35   E6-2. 1st fl. #1501  Cotunneling drag effect in Coulomb-coupled quantum dots
34   E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
33   E6-2. 2nd fl. #2501  Ultrafast X-ray Studies on Dynamics Matter in Extreme Conditions
32   E6-2. 5st fl. #1501  Spectroscopic studies of iron-based superconductors : what have we learned?
31   E6. #1501(1st fl.)  Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics
30   E6. #1501(1st fl.)  Aperiodic crystals in low dimensions
29   KAIST Natural Science Building (E6-2), RM #4314  Radio frequency engineering
28   KAIST Natural Science Building (E6-5), EDU 3.0 Room(1st fl.)  Relational Logic (with applications to Quantum Mechanics, String Theory, Cosmology, Neutrino Oscillations, Statistical Mechanics)
27   KI Blgd.(E4), Lecture Room Red B501 (5F)  First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
26   Lecture Hall, College of Natural Sciences [#1501,E6-2]  Topological Defects and Phase Transitions