visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
seminar Date  
Date & Time Nov. 16 (Wed), 4p.m. 
Venue #1323(E6-2. 1st fl.) 
Speaker Dr. Heung-Sik Kim , University of Toronto 

Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators 

 

Nov. 16 (Wed), 4p.m., #1323(E6-2. 1st fl.)

Dr. Heung-Sik Kim , University of Toronto  

 

The topological Haldane model (THM) on a honeycomb lattice is a prototype of systems hosting topological phases of matter without external fields. It is the simplest model exhibiting the quantum Hall effect without Landau levels, which motivated theoretical and experimental explorations of topological insulators and superconductors. Despite its simplicity, its realization in condensed matter systems has been elusive due to a seemingly difficult condition of spinless fermions with sublattice-dependent magnetic flux terms. While there have been theoretical proposals including elaborate atomic-scale engineering, identifying candidate THM materials has not been successful, and the first experimental realization was recently made in ultracold atoms. Here we suggest that a series of Fe-based honeycomb ferromagnetic insulators, AFe2(PO4)2 (A=Ba,Cs,K,La) possess Chern bands described by the THM. While BaFe2(PO4)2 fails to exhibit quantized Hall effect due to the filling of even and odd Chern bands, we predict that compounds with A=K,Cs,La have nontrivial bulk Chern numbers with well-defined gap, thereby enabling a solid state realization of THM. 

 

Contact: MyungJoon Han, Physics Dept., (mj.han@kaist.ac.kr)

 

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
125   #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
124   #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
123   #1323(E6-2. 1st fl.)  Symmetry Protected Kondo Metals and Their Phase Transitions
122   #1323(E6-2. 1st fl.)  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
121   #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
120   #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
119   #1323(E6-2. 1st fl.)  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
118   #1323(E6-2. 1st fl.)  Isostatic magnetism
117   #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
116   #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters
»   #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
114   #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
113   #1323(E6-2. 1st fl.)  Symmetry Protected Kondo Metals and Their Phase Transitions
112   #1323(E6-2. 1st fl.)  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
111   #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
110   #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
109   #1323(E6-2. 1st fl.)  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
108   #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
107   #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters
106   #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators