visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
seminar Date  
Date & Time Jun. 14 (Tue) 4PM 
Venue Seminar Room (#2502, 2nd fl.) 
Speaker Young-Sik Ra, Université Pierre et Marie Curie 

Photonic quantum network based on multimode squeezed vacuums and single-photon subtraction

 

Jun. 14 (Tue) 4PM, Seminar Room (#2502, 2nd fl.)
Young-Sik Ra, Université Pierre et Marie Curie

 

Over the last decades, application of photonic technologies to quantum information science has been very successful, which establishes light as a promising quantum system to carry and process quantum information. Quantum information is encoded on the quantum states of light such as single photons and squeezed lights; the encoded information can be controlled with high precision, maintained with low decoherence, transmitted at the fastest speed, and decoded by efficient detectors. Conventional ways for generating the quantum states of lights are, however, unsuited for constructing a large-scale quantum system due to the highly increasing resource overheads. In this seminar, I will present development of a photonic quantum network – a correlated large-scale quantum system – based on multimode squeezed vacuums and single-photon subtraction. We employ the intrinsic multimode structure of an ultrafast frequency comb to construct the quantum network, and implement a mode-selective single-photon subtractor based on frequency up-converted single-photon detection. I will further discuss our recent progress on experimental implementation of the photonic quantum network.

 

Contact: Yoonsoo Kim (T.2599)

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
201     Entanglement area law in strongly-correlated systems
200     Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
199     Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
198     Symmetry Protected Kondo Metals and Their Phase Transitions
197     Harmonic oscillator physics with single atoms in a state-selective optical potential
196     Non-equilibrium many-body spin dynamics in diamond
195     Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
194     Low Dimensional Active Plasmonics and Electron Optics in Graphene
193     Dirac fermions in condensed matters
192     Bandgap Engineering of Black Phosphorus
191     Quantum information experiments using few electron spins in semiconductors
190     Exotic phenomena at oxide LaAlO3/SrTiO3 hetero-interface and their applications
189     Time scale dependent dynamics in InAs/InP quantum dot gain media
188     Terahertz Metal Optics
187     Search for dark sector particles in the B-factory experiments
186     IMS and examples of the studies on optoelectronic materials
185     “Hybrid quantum systems with mechanical oscillators”
184     "Visualization of oxygen vacancy in motion and the interplay with electronic conduction"
183     “Tilt engineering of 4d and 5d transition metal oxides?”
182     “Symmetry and topology in transition metal dichalcogenide?”