visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
seminar Date  
Date & Time May 13 (Fri.) 4 PM 
Venue E6. #1501(1st fl.) 
Speaker Dr. Hosub Jin, Dept. of Physics, UNIST 

Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics

 

Dr. Hosub Jin, Dept. of Physics, UNIST
May 13 (Fri.) 4 PM, E6. #1501(1st fl.)

 

Graphene has been drawn great attention, triggering the outburst of two dimensional materials research. Among various capable applications, graphene was suggested as a platform for topological electronics; following the finding of the quantum spin Hall pahse, diverse topological phases have been suggested in graphene via generating the mass-gap at the Dirac point. To be more optimal for topological electronics applications, however, the large spin-orbit coupling and/or the bandgap tunability are necessary, which are hardly accessible in graphene. In an attempt to find the practical candidates, we suggest that the (111)-oriented BaBiO3 bilayer pervskite oxides sandwiched by large gap insulators can provide an ideal platform for topological electronics. The Dirac fermion and its various topological phases in this heterostructure emerge from the confluence of three research areas in condensed matter physics: Dirac materials, oxide heterostructures, and topological electronic structures. By taking account of the charge, spin, valley and pseudospin degrees of freedom of the Dirac fermion and the abundant order parameters of oxide perovskites, we may find a zoo of topological quantum matters in the oxide herostructures.

 

Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
201     Entanglement area law in strongly-correlated systems
200     Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
199     Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
198     Symmetry Protected Kondo Metals and Their Phase Transitions
197     Harmonic oscillator physics with single atoms in a state-selective optical potential
196     Non-equilibrium many-body spin dynamics in diamond
195     Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
194     Low Dimensional Active Plasmonics and Electron Optics in Graphene
193     Dirac fermions in condensed matters
192     Bandgap Engineering of Black Phosphorus
191     Quantum information experiments using few electron spins in semiconductors
190     Exotic phenomena at oxide LaAlO3/SrTiO3 hetero-interface and their applications
189     Time scale dependent dynamics in InAs/InP quantum dot gain media
188     Terahertz Metal Optics
187     Search for dark sector particles in the B-factory experiments
186     IMS and examples of the studies on optoelectronic materials
185     “Hybrid quantum systems with mechanical oscillators”
184     "Visualization of oxygen vacancy in motion and the interplay with electronic conduction"
183     “Tilt engineering of 4d and 5d transition metal oxides?”
182     “Symmetry and topology in transition metal dichalcogenide?”