visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Topological Dirac insulator

2017.05.10 14:46

관리자 조회 수:311

seminar Date  
Date & Time  
Venue  
Speaker  

“Topological Dirac insulator”

 

Dr. Young Kuk Kim 

Sungkyunkwan University 

 

May. 12 (Fri.), 01:30 PM

E6-2. 1st fl. #1323

 

 

The discovery of a topological insulator in 2005 led to remarkable development of topological band theory, revealing a variety of symmetry-protected topological insulators and semimetals. Here we introduce our recent finding of a novel topological crystalline insulating phase, referred to as a topological Dirac insulator [1]. A topological Dirac insulator is a bulk insulator with protected metallic surface states, allowed by non-symmorphic space group symmetries. Unlike conventional topological insulators, the surface states of a topological Dirac insulator occur as a four-fold degenerate Dirac point, considered as a topological phase boundary between a two-dimensional topological insulator and a normal insulator. We introduce Z4xZ2 topological invariants that characterizes topological Dirac insulator phase and demonstrate how to evaluate from the Wilson loop calculations. We also discuss its material realizations based on first-principles calculations.

 

[1] Wieder, Benjamin J., Barry Bradlyn, Zhijun Wang, Jennifer Cano, Youngkuk Kim, Hyeong-Seok D. Kim, A. M. Rappe, C. L. Kane, and B. Andrei Bernevig. "Wallpaper Fermions and the Topological Dirac Insulator." arXiv preprint arXiv:1705.01617 (2017). 

 

Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

 

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
121     Exact Solution for the Interacting Kitaev Chain at Symmetric Point file
120     An Introduction to Quantum Spin Liquids file
119     Time-resolved ARPES study of Dirac and topological materials
118   E6-2. #1323(1st fl.)  Quantum information experiments using few electron spins in semiconductors
117   #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
116   #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters
115   E6-2. #1323(1st fl.)  Low Dimensional Active Plasmonics and Electron Optics in Graphene
114   #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
113   #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
112   #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
111   #1323(E6-2. 1st fl.)  Symmetry Protected Kondo Metals and Their Phase Transitions
110   #1323(E6-2. 1st fl.)  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
109   #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
108   #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
107   1:30p.m. #1323(E6-2. 1st fl.)  “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
106   Lecture Hall, College of Natural Sciences [#1501,E6-2]  Topological Defects and Phase Transitions
105   #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
104   #1323(E6-2. 1st fl.)  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
103   Seminar Room 1323  Spring 2017: Physics Seminar Serises file
102   Seminar Room 1501  Spring 2017: Physics Colloquium file