visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Topological Dirac insulator

2017.05.10 14:46

관리자 조회 수:319

seminar Date  
Date & Time  
Venue  
Speaker  

“Topological Dirac insulator”

 

Dr. Young Kuk Kim 

Sungkyunkwan University 

 

May. 12 (Fri.), 01:30 PM

E6-2. 1st fl. #1323

 

 

The discovery of a topological insulator in 2005 led to remarkable development of topological band theory, revealing a variety of symmetry-protected topological insulators and semimetals. Here we introduce our recent finding of a novel topological crystalline insulating phase, referred to as a topological Dirac insulator [1]. A topological Dirac insulator is a bulk insulator with protected metallic surface states, allowed by non-symmorphic space group symmetries. Unlike conventional topological insulators, the surface states of a topological Dirac insulator occur as a four-fold degenerate Dirac point, considered as a topological phase boundary between a two-dimensional topological insulator and a normal insulator. We introduce Z4xZ2 topological invariants that characterizes topological Dirac insulator phase and demonstrate how to evaluate from the Wilson loop calculations. We also discuss its material realizations based on first-principles calculations.

 

[1] Wieder, Benjamin J., Barry Bradlyn, Zhijun Wang, Jennifer Cano, Youngkuk Kim, Hyeong-Seok D. Kim, A. M. Rappe, C. L. Kane, and B. Andrei Bernevig. "Wallpaper Fermions and the Topological Dirac Insulator." arXiv preprint arXiv:1705.01617 (2017). 

 

Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

 

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
221   E6-2, #1323  Electron Tunneling Spectroscopy of Single and Bilayer Graphene with Hexagonal Boron Nitride as Tunneling Barrier
220   E6-2, #1323  Introducing extra dimensions to spectroscopic studies of advanced quantum materials
219   E6-2, #1323  Samarium Hexaboride: Is it a Topological insulator?
218   E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors
217   E4(KI Building), Connect room (2nd fl.)  Functional Imaging & Monitoring of Brain & Breast with Diffuse Light
216   E6-2, #1323  SWELLABLE COLLOIDAL PARTICLES ARE SWELL
215   E6-2, #1323  Dynamical mean field theory studies on heavy fermion system
214   E6-2, #1323  Quantum spin liquid in the 1/3 depleted triangular lattice Ba3(Ru1-xIrx)Ti2O9
213   E4(KI Building), Maxtrix Hall (2nd fl.)  Wavefront engineering for in-vivo Deep brain imaging
212   E6-2, #1323  Mott Physics in the Strong Spin-Orbit Coupling Regime
211   E6-2, #1323  Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
210   E6, 1501  Physics Colloquium : 2016 Spring file
209   E6-2. 1st fl. #1501  Topological phases of matter in nonequilibrium: Topology of the Wannier-Stark ladder
208   E6-2. 1st fl. #1501  Jan. Switching handedness of of chiral solitons in Z4 topological insulators
207   E6-2, 1501  Physics Seminar Serises : 2016 Spring file
206   KAIST Natural Science Building (E6-2), RM #4314  Radio frequency engineering
205   E6-2, RM #1323  Superconducting Quantum Interference Devices for Precision Detection
204   E6-2. 1st fl. #1501  Interference of single charged particles without a loop and dynamic nonlocality
203   E6-2. 1st fl. #1501  Cotunneling drag effect in Coulomb-coupled quantum dots
202   E6-2. 1st fl. #1322  A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space