visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
seminar Date  
Date & Time Jul. 28 (Thu.) 4PM 
Venue #1323(E6-2. 1st fl.) 
Speaker Prof. Johannes Pollanen, Jerry Cowen Chair of Experimental Physics at Michigan State University 

Low Dimensional Electrons: On the Road to Hybrid Quantum Systems

 

Jul. 28 (Thu.) 4PM, #1323(E6-2. 1st fl.)

Prof. Johannes Pollanen, Jerry Cowen Chair of Experimental Physics at Michigan State University

 

Creating and controlling novel quantum states of matter is at the forefront of modern condensed matter physics. I will discuss two examples of this paradigm from my experiences studying two-dimensional(2d) electron systems. First, I will describe experiments on a class of 2d liquid crystalline states existing in semiconductor heterostructures. These fascinating states, known as quantum Hall nematics, exhibit a mysterious broken rotational symmetry in the 2d plane. We have found that engineering the device structure can experimentally control this symmetry; thereby demonstrating a unique technique for manipulating the orientation of these exotic quantum states. In the second part of my talk I will describe how high frequency surface acoustic waves(SAW) can be used to elucidate the properties of electronic states in two dimensions. Our recent experiments reveal the presence of a metastable conducting phase in the interior of a quantum Hall state. Finally, I will briefly remark on our efforts at the LHQS to create hybrid quantum systems composed of free electrons floating on the surface of liquid helium coupled to nanoscale structures or topological states of matter. These systems provide a unique platform for studying the fundamental physics of low dimensional electrons and their potential quantum computing applications.

 

Contact: CULTure Lab (h.choi@kaist.ac.kr)

번호 seminar Date Venue 제목
공지     Spring 2019: Physics Seminar Serises
공지     Spring 2019: Physics Colloquium
공지   Seminar Room #1323  Fall 2017: Physics Seminar Serises
공지   Seminar Room 1501  Fall 2017: Physics Colloquium
181   #1323(E6-2, 1st fl.)  Quantum information processing using quantum dots and photonic crystal cavities
180   #1323(E6-2. 1st fl.)  Isostatic magnetism
179   #1323(E6-2. 1st fl.)  Let there be topological superconductors
178   #1323(E6-2. 1st fl.)  Electronic quasiparticles in the quantum dimer model
»   #1323(E6-2. 1st fl.)  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
176   KAIST Natural Science Building (E6-5), EDU 3.0 Room(1st fl.)  Relational Logic (with applications to Quantum Mechanics, String Theory, Cosmology, Neutrino Oscillations, Statistical Mechanics)
175   E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
174   E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
173   Natual Scien Bldg.(E6)m #1501  Physics Colloquium : 2016 Fall file
172   #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
171   E6-2. #2502(2nd fl.)  Entanglement probe of two-impurity Kondo physics
170   #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
169   E6-2. #2501(2nd fl.)  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
168   E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
167   E6-2, #1323  2016 Fall, Physics Seminar Serises file
166   E6-2. #1323(1st fl.)  “Symmetry and topology in transition metal dichalcogenide?”
165   E6-2. #1323(1st fl.)  “Tilt engineering of 4d and 5d transition metal oxides?”
164   1st fl. #1323(E6-2)  "Visualization of oxygen vacancy in motion and the interplay with electronic conduction"
163   E6-2. 1st fl. #1323  “Hybrid quantum systems with mechanical oscillators”
162   #1323,(E6-2, 1st fl.)  IMS and examples of the studies on optoelectronic materials