visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-08-31 14:00 
일시 AUG. 31 (Thu.), 2 PM 
장소 #5318(E6-2. 5th fl.) 
연사 Prof. Hiroaki Ishizuka (The University of Tokyo) 

“Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals”

Prof. Hiroaki Ishizuka (The University of Tokyo)

AUG. 31 (Thu.), 2 PM / #5318(E6-2. 5th fl.)

 

Berry phase is one of the important keywords to understand non-trivial quantum effects. In condensed matter physics, the Berry phase often shows up in transport phenomena (e.g., quantum and anomalous Hall effects) and is considered as a keyword to understand topological properties of non-interacting fermion systems. While most of such studies have focused on the equilibrium states or linear responses in close to the equilibrium, a recent study on the photogalvanic effects have pointed out the relation between the Berry phase and photogalvanic effects in noncentrosymmetric insulators where inter-band transitions take an essential role [1-3]; it is named shift current as it is related to the shift of the Wannier function. So far, however, no observable consequences that distinguish this phenomenon from the conventional mechanism is known. In this talk, we theoretically explored the basic properties of shift current focusing on the distinction between the conventional and shift current mechanisms. 

To theoretically study the photocurrent, we employed a Keldysh Green’s function formalism combined with Floquet theory. Using a large size numerical calculation, we study how the photocurrent changes by the local excitation, i.e., when only a part of the system is irradiated by the light. We show that, for the shift current, the magnitude of the current does not depend on the position of the light [4]. This is in contrast to the conventional mechanism, where the photocurrent is expected to be larger at the edge of the sample while it is suppressed when the light is at the center. Such behavior is consistent with the photocurrent recently observed in a noncentrosymmetric organic solid [5].

In the latter half of the talk, we discuss the effect of Berry phase on the photocurrent in Weyl semimetals [6,7]. We show that the Berry phase associated with the Weyl nodes induce a similar phenomenon to the adiabatic pump, resulting in a dissipation-less photocurrent. We find that the photocurrent appears only with the circularly polarized lights. This mechanism may potentially explain the photocurrent observed in TaAs [8].

 

[1] W. Kraut and R. von Blatz, Phys. Rev. B 19, 1548 (1979); ibid. 23, 5590 (1981). 

[2] J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337 (2000).

[3] T. Morimoto and N. Nagaosa, Science Adv. 2, e1501524 (2016).

[4] H. Ishizuka and N. Nagaosa, New J. Phys. 19, 033015 (2017).

[5] M. Nakamura, et al., Nature Commun. 8, 281 (2017).

[6] H. Ishizuka et al., Phys. Rev. Lett. 117, 216601 (2016).

[7] H. Ishizuka et al., Phys. Rev. B 95, 245211 (2017).

[8] Q. Ma et al., preprint (arXiv: 1705.00690).

 

Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

20170831_Hiroaki Ishizuka.pdf

번호 날짜 장소 제목
405 2023-08-23 16:00  E6-2, #1322  [High Energy Theory Seminar] A spacetime tensor network for AdS3/CFT2
404 2023-08-24 11:00  E6, Rm#1323  Advancing magnonic metamaterials: spin waves in nanomagnetic arrays
403 2020-08-25 20:00  Zoom webinar  KAIST Global Forum for Spin and Beyond (Second Forum) file
402 2017-08-16 16:00  #1322 (E6-2. 1st fl.)  Phonon-driven spin-Floquet valleytro-magnetism file
401 2020-08-17 20:00  Zoom webinar  Using magnetic tunnel junctions to compute like the brain file
400 2022-08-01 10:00  E6 #1501 & Zoom  [Update 세미나 영상] James Webb Space Telescope & OTE Commissioning
» 2017-08-31 14:00  #5318(E6-2. 5th fl.)  “Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals” file
398 2016-08-04 14:30  KAIST Natural Science Building (E6-5), EDU 3.0 Room(1st fl.)  Relational Logic (with applications to Quantum Mechanics, String Theory, Cosmology, Neutrino Oscillations, Statistical Mechanics)
397 2022-08-08 14:00  E6-2 #2502  Classical Shadow Tomography for Analog Quantum Simulators
396 2022-08-09 14:00  KI building (E4), Lecture Room Red (B501)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file
395 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
394 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
393 2022-08-17 11:00  E6-6 #118호  Robust Hamiltonian Engineering of Large Quantum Systems (큰 양자시스템의 견고한 해밀토니안 엔지니어링)
392 2022-08-18 10:00  E6-1 #1323  Disorder-driven phase transition in the second-order non-Hermitian skin effect
391 2018-08-01 11:00  양분순 빌딩 (E16-1) 207호  Future of AI: Is the brain a computer? file
390 2024-08-22 16:00  RM #C303, Creation Hall (3F), KAIST Munji Campus  [CAPP seminar] Development of a 12-20 GHz CO Intensity Mapping Receiver for Capturing the Star-formation History in the Early Universe file
389 2019-08-27 16:00  Rm. 1323, E6  Critical current properties of Fe-based superconductors file
388 2023-08-29 16:00  E6-2, #2502  [High Energy Theory Seminar] Towards string loop corrections in Calabi-Yau orientifold compactifications.
387 2019-08-14 16:00  Rm. 1323, E6  Quantum Optics, at the heart of quantum metrology and quantum information file
386 2019-08-16 14:00  E6 Room(#1323)  Multiferroic and Magnetoelectric Effects by Tailoring Interfacial Chemistry and Physics in Correlated Oxides file