visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 E6-2(1st fl.), #1323 
일시 Sep. 02(Fri) 2:30 PM 
연사 Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST 

Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction

 

Sep. 02(Fri) 2:30 PM, E6-2(1st fl.), #1323
Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST

 

Abstract:
Heat, a measure of entropy, is largely perceived to be diffusive and transported incoherently by charge carriers (electrons and holes) and lattice vibrations (phonons) in a material. Because heat can be carried by many different (quasi-)particles, it is generally hard to spatially localize the transport of the thermal energy. Heat transport is thus considered to be a challenging means of the local probing of a material and of its electronic states. Recently, we have shown that coherent electron and heat transport through a point-like contact in the atomic force microscope set-up at the ultra-high vacuum condition produces an atomic Seebeck effect, which represents the novel imaging principle of surface wave functions with atomic resolution. The heat-based scanning Seebeck microscopy clearly contrasts to the vacuum tunneling-based scanning tunneling microscopy, a hitherto golden standard of imaging surface wave functions. We have found that the coherent transmission probabilities of electron and phonon across the tip-sample junction are equally important for the imaging capability of the scanning Seebeck microscope. Very recently, we have reported that abnormally enhanced nanoscale friction on ice-trapped graphene surface could be understood in terms of flexural phonon couplings between graphene and substrate (e.g. mica). Also, we have found that energetic tunneling electrons in scanning tunneling microscopy can cause chemical reactions at the single molecule level by locally exciting phonon modes of molecules (or nanoscale heating) under the tip through the inelastic electron-phonon scattering. In this talk, I will discuss how we theoretically explore nanoscale thermal physics including thermoelectric imaging, nanoscale friction, and single molecule chemical reaction, specifically in the setup of scanning probe microscopy.


Contact: Sung Jae Cho, Physics Dept., (sungjae.cho@kaist.ac.kr)

번호 일시 장소 연사 제목
188 Jan. 17(Mon) - 21 (Fri), 2-4pm  E6-2 Room 2502  Dr. Donghui Jeong (Penn State University)  Five Lectures on Observational Probes of Dark Energy file
187 Jan. 18(Tue), 2pm-3pm  KI bldg. 5th fl. Room B501 & Zoom  YoungJu Jo (Stanford University)  Data-driven interrogation of biological dynamics: from subcellular interactions to neuronal networks in vivo file
186 Jan. 25th (Tue), 15:00  E6 #1501/online  Junhyun Lee (Rutgers, the State University of New Jersey)  Emulating twisted double bilayer graphene with a multiorbital optical lattice file
185 Jan. 26th (Tue), 13:00  E6 #1501  Dr. Hyojin Jung (NIMS)  An Introduction to Cohomology groups file
184 JAN. 7 (Mon), 03:00 PM  E6-2. 2st fl. #2501  Dr. Byoung min Kang  Many-Body Invariants for Multipoles in Higher-Order Topological Insulators file
183 Jan.28(Thu), 03:00PM  Zoom  Yaroslav Tserkovnyak (UCLA)  Topological Transport of Deconfined Hedgehogs in Magnets file
182 Jan.28(Thu), 06:00PM  Online Seminar  Alexandre Zagoskin(Loughborough Univ.)  Quantum metamaterials: concept, theory, prototypes and possible applications file
181 Jan.9 (Wed.), 04:00 PM  E6-2. 2nd fl. #2501  Dr. Heung-Sik Kim  Molecular Mott state in the deficient spinel GaV4S8 file
180 January 17 (Fri), 4:00 PM  #1323, E6-2  Hiroki Ikegami  Symmetry Breaking and Topology in Superfluid 3He file
179 January 23, 2019  Rm. C303, Creation Hall (3F), Munji Campus  Mikko Mottonen  Ultrasensitive Microwave Bolometer: Opportunity for Axion Detectors file
178 Jul 3rd, 2019 (Wed)  E6-2, 2501  Kyung Soo Choi  Many-body quantum electrodynamis (QED) with atoms and photons: A new platform for quantum optics" file
177 Jul. 07 (Thu.) 2PM  #1323(E6-2. 1st fl.)  Dr. Eun Ah Kim, CORNELL UNIV.  Let there be topological superconductors
176 Jul. 08 (Fri.) 11:00 AM  #1323(E6-2. 1st fl.)  Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.)  Isostatic magnetism
175 Jul. 08 (Fri.) 2PM  #1323(E6-2. 1st fl.)  Dr. Junhyun Lee, Harvard University  Electronic quasiparticles in the quantum dimer model
174 Jul. 28 (Thu.) 4PM  #1323(E6-2. 1st fl.)  Prof. Johannes Pollanen, Jerry Cowen Chair of Experimental Physics at Michigan State University  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
173 July 10 (Wed.), 04:00 PM-  Academic Cltural Complex (E9) 5층 스카이라운지  Prof. Sidney Nagel/Young-Kee Kim  Public Lectures file
172 July 13, 2018 at 14:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Prof. Ian Lewis (The University of Kansas, Department of Physics & Astronomy)  Loop Induced Single Top Partner Production and Decay at the LHC
171 July 2, 2020 (Thursday)  Zoom Video Conference Seminar  Dr. Emmanuel Flurin (CEA Saclay)  An irreversible qubit-photon coupling for the detection of itinerant microwave photons file
170 July 2. 2018 (Monday) 3:00 PM  Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus  Dr. Peter Winter (Argonne National Laboratory)  High Precision Magnetic Field Measurement for the Muon g-2 Experiment file
169 July 21 - August 2  E6-2,# 5318  Junmou Chen/Thomas Flacke/Kaoru Hagiwara/Junichi Kanzaki/Chris Kelso/Jeong Han Kim/Kyoungchul Kong/Gabriel Lee/Hye-Sung Lee/Ian Lewis  Challenges and Opportunities in Theoretical Particle Physics 2019 file