visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-06-14 10:00 
연사  
장소 E6-2, 2nd fl. #2502 

Physics Seminar

 

 

Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation”

 

Prof. Kenji Toyoda

Osaka University

 

June 14 (THU), 10:00 AM

E6-2, 2nd fl. #2502

 

Phonons are ubiquitous quantum-mechanical excitations representing the quantized energies of vibrational modes.  They are becoming more and more actively controled and used in such areas as phonon engineering and optomechanical systems. In the study of trapped ions for quantum information processing, as well, phonons has taken essential roles. They have been traditionally used to mediate information between internal-state qubits to realize quantum gates. On the other hand, they have certain useful properties, in their own right, for use as independent degrees of freedom. Phonons obey the Bose-Einstein statistics, and by adjusting trap parameters they can take global as well as local characteristics. These properties can be utilized for such areas as quantum computation and quantum simulation.

  In this talk, I would like to present three topics related to phonons and characteristic motions in trapped ions. The first one is experiments on two-phonon interference (the Hong-Ou-Mandel effect) and prospects toward realization of phonon-based quantum computing using the interference of multiple phonons. The second topic is the quantum simulation of interacting particles in solid-state materials based on phonon-based quasiparticles. When ions are illuminated with optical pulses resonant to vibrational sidebands, quasiparticles called phonon-polaritons are formed, which can be used for quantum simulation that catches the basic characteristics of interacting electrons in solids. The last topic is the study of a ''quantum rotor'' made from a three-ion crystal in a triangular shape. The superpositions of optically distiguishable two orientations of the crystal are realized by cooling its rotational mode to the ground state. Furthermore, their dependence to an applied static magnetic field, due to the Aharonov-Bohm effect, is observed.

 

Contact: EunJung Jo, Physics Dept., (jojo@kaist.ac.kr)

 

Department of Physics, KAIST

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
514 2016-10-27 16:00    Terahertz Metal Optics
513 2016-11-01 14:30    Search for dark sector particles in the B-factory experiments
512 2016-11-04 13:30    Exotic phenomena at oxide LaAlO3/SrTiO3 hetero-interface and their applications
511 2016-11-04 15:00    Quantum information experiments using few electron spins in semiconductors
510 2016-11-1 10:30    Time scale dependent dynamics in InAs/InP quantum dot gain media
509 2016-11-10 16:00    Low Dimensional Active Plasmonics and Electron Optics in Graphene
508 2016-11-11 13:30    Bandgap Engineering of Black Phosphorus
507 2016-11-11 16:00    Dirac fermions in condensed matters
506 2016-11-16 16:00    Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
505 2016-11-18 10:30    Non-equilibrium many-body spin dynamics in diamond
504 2016-11-24 16:00    Harmonic oscillator physics with single atoms in a state-selective optical potential
503 2016-11-29 16:00    Symmetry Protected Kondo Metals and Their Phase Transitions
502 2016-12-09 13:30    Entanglement area law in strongly-correlated systems
501 2016-12-09 16:00    Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
500 2016-12-12 13:30    “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
499 2016-12-8 16:00    Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
498 2017-01-09 16:00    Topological Defects and Phase Transitions" file
497 2017-02-01 14:00    Quantum electron optics using flying electrons
496 2017-03-02 16:00    “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
495 2017-03-06 16:00    Spring 2017: Physics Colloquium file