visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-07-16 16:00 
연사  
장소 E6-2, 1318 

Next-generation ultrafast laser technology for nonlinear optics and strong-field physics

2015/7/16 (Thurs) 4PM, Rm 1318 (Faculty Conference Rm.)

Dr. Kyunghan Hong, MIT

 

Femtosecond high-power Ti:sapphire chirped-pulse amplification (CPA) laser technology at 800 nm of wavelength has been widely and almost exclusively used over last two decades for studying ultrafast nonlinear optics and strong-field phenomena. Recently ultrafast optical parametric chirped-pulse amplification (OPCPA) technology has made a rapid progress, so that various wavelengths are available at high intensities. The wavelength selectivity provides interesting opportunities in ultrafast nonlinear optics and strong-field phenomena driven especially at mid-infrared (MIR) wavelengths. High-harmonic generation (HHG) driven by MIR wavelengths has been proven to be a reliable way to achieve a tabletop coherent water-window soft X-ray (280-540 eV) or keV source. On the other hand, the super-continuum generation (SCG) in the MIR range is highly useful for detecting biomedical materials and air pollutants with the resonant fingerprints of the common molecules, such as H2O, CO2, CO, and NH4. The highly nonlinear laser filamentation process enables the SCG in bulk dielectrics and gases. 


In this presentation, I review our recent progress on a multi-mJ MIR (2.1 m) OPCPA system operating at a kHz repetition rate, pumped by a picosecond cryogenically cooled Yb:YAG laser. Using this novel MIR source, we demonstrate high-flux soft X-ray HHG up to the water-window range. In addition, I present the MIR filamentation in dielectrics showing 3-octave-spanning SCG and sub-2-cycle self-compression. I will also discuss novel high-energy pulse synthesizer technology based on multi-color OPCPA systems. The work presented here provides an excellent platform of next-generation strong-field laser technology.

 

Contact: HeeKyunh Ahn, Laser Science Research Lab. Tel. 2561

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
134 2017-08-16 16:00    Phonon-driven spin-Floquet valleytro-magnetism file
133 2017-07-14 15:00    Chiral anomaly in disordered Weyl semimetals file
132 2017-07-10 16:00    “Intertwined Orders in a Heavy-fermion metal” file
131 2017-06-02 16:00    Maxwell's demon in quantum wonderland file
130 2017-06-02 14:30    Quasiparticle Interference and Fourier transform scanning tunneling spectroscopy in WTe2 (Weyl semimetal) file
129 2017-05-12 13:30    Topological Dirac insulator
128 2017-04-28 16:00    Carbon nanotubes coupled to superconducting impedance matching circuits
127 2017-04-28 14:30    Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion
126 2017-04-27 16:00    반도체 양자점을 이용한 단광자 광원
125 2017-04-06 16:00    For whom the Belle tolls
124 2017-04-05 12:00    2017년 4월 첫수 융합포럼 개최 안내(물리학과 & 원자력 및 양자공학과 공동 개최)/The First Wednesday Multidisciplinary Forum in April 2017 organized by Dept. of Physics & Dept. of Nuclear & Quantum Engineering file
123 2017-03-24 16:00    Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
122 2017-03-24 14:30    Topological Dynamics
121 2017-03-21 16:00    Spring 2017: Physics Seminar Serises file
120 2017-03-06 16:00    Spring 2017: Physics Colloquium file
119 2017-03-02 16:00    “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
118 2017-02-01 14:00    Quantum electron optics using flying electrons
117 2017-01-09 16:00    Topological Defects and Phase Transitions" file
116 2016-12-8 16:00    Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
115 2016-12-12 13:30    “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”