visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-08-04 11:00 
일시 2015/08/04, 11PM 
장소 B501, Room Red, KI bldg. 5nd fl. 
연사 Dr. Eric Jin Ser Lee(Univ. of Manitoba, Canada) 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada

 

 

During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 

 

The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 

 

The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.

 

Contact: Prof. YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr)

 

 

번호 날짜 장소 제목
224 2022-01-17 14:00  E6-2 Room 2502  Five Lectures on Observational Probes of Dark Energy file
223 2023-01-12 14:40  E6-2 #1323  JILA 1D Wannier-Stark optical lattice clock file
222 2022-01-11 15:00  E6 #1501  Ultrafast optical studies on CDW collective modes of the Weyl-CDW (TaSe4)2I file
221 2024-01-03 11:00  E6-2, #1323  Interplay of Strong Correlations, Topology, and Disorder in 2D Quantum Matters
220 2024-01-25 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminars] Detecting Gravitational Waves by Elecromagnetic Cavity
219 2024-01-24 15:00  E6-2 #1323  Determination of single molecule loading rate during mechanotransduction file
218 2024-01-16 16:00  E6-2, #2502  [High Energy Theory Seminar] Towards quantum black hole microstates
217 2022-01-12 11:00  Zoom and E6 #1323  Spectroscopic study of trapped ions towards probing dark matter and new physics file
216 2019-02-21 16:00  #5313, E6-2  B-meson charged current anomalies - Theoretical status file
215 2020-02-20 16:00  #1323, E6-2  Unconventional superconductivity in the locally non-centrosymmetric heavy-fermion CeRh2As2 file
214 2020-02-13 16:30  E6-6, #119  Enhanced Light-Matter Interactions in Graphene with Noble Metal Plasmonic Structures file
213 2020-02-12 13:00  E6-2, #5318  From inflation to new weak-scale file
212 2021-02-17 09:00  Online  석학 대중 강연 및 강의 시리즈 file
211 2024-02-16 10:00  E6, #1323  Optical conductivity of superconducting states driven by Van Hove singularities
210 2021-02-15 17:00  Zoom  Magnetic Cluster Octupole Domain evolutation in chiral antiferromagnets file
209 2023-02-28 11:00  E6 Room(#1322)  Topotactic redox engineering toward novel material file
208 2019-02-25 16:00  Rm. 1501 (E6)  Spring 2019: Physics Colloquium file
207 2021-02-02 14:30  Zoom  Quantum- & Nano-Photonics 세미나(Integrated Nanophotonics with Metamaterials, Microcomb, and Atomic Systems) file
206 2018-02-12 15:00  #C303, (Creation Hall 3F, KAIST Munji Campus)  The recent result of XMASS Experiment
205 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons