visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2024-06-12 16:00 
연사  
장소 E6-2, #1323 

아래와 같이 세미나를 개최하고자 하오니, 관심있는 분들의 많은 참석 부탁드립니다.

 

Date: 4:00 pm, 12th Jun (Wed)
Place: E6-2, #1323
Speaker: Dr. Hanbit Oh (Department of Physics and Astronomy, Johns Hopkins University)
Title: New high Tc superconductivity and symmetric pseudogap metal in the bilayer nickelate La3Ni2O7-Part2
Abstract: 

The recent discovery of an 80 K superconductor in La3Ni2O7 has attracted considerable interest. While numerous theoretical frameworks have been proposed, most assume that bilayer nickelates reside in the Mott-Hubbard regime. However, recent experiments suggest that La3Ni2O7 may belong to the charge transfer regime.  In the first part of the talk, I present the charge transfer regime of the bilayer nickelates by accounting for doped holes entering the oxygen p orbitals. Interestingly, we show that the Zhang-Rice doublon state emerges as the proper low-energy degrees of freedom for the hole-doped state, distinct from the Zhang-Rice singlet in hole-doped cuprates [3].  The low energy theory in the charge transfer regime is also demonstrated as a bilayer type-II t-J model previously proposed in the Mott- Hubbard regime. Given the richness of this physics, there is a natural desire to simulate the superconductivity using programmable quantum simulators to explore diverse physics phenomena. In the second part of the talk, I present a theoretical proposal to utilize the tetralayer optical lattice systems with ultracold atoms to simulate novel bilayer nickelate superconductors. Notably, the synthetic Kondo interaction simulated in the cold atom system is antiferromagnetic, contrasting with the ferromagnetic Hund coupling inherent in nickelate materials. This difference in the sign of the Kondo interaction enhances the pairing gap, equivalently to Tc allowing us to detour the challenge of reaching ultra-low temperatures in cold atom experimental setups. We further propose a signature to identify the pairing state can be applied to the snapshot measurements.

[1] Hanbit Oh and Ya-Hui Zhang, Phys. Rev. B 108 (2023)

[2] Hui Yang*, Hanbit Oh*, Ya-Hui Zhang, arXiv:2309.15095 (2023)

 

[2] Hanbit Oh, Boran Zhou, Ya-Hui Zhang, arXiv:2405.00092 (2024)

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
334 2019-12-13 13:30    Biophysics Mini-symposium at KAIST file
333 2019-12-18 16:00    Road to Higher Tc Superconductivity file
332 2019-12-27 15:00    The superconducting order parameter puzzle of Sr2RuO4 file
331 2019-12-27 15:00    The superconducting order parameter puzzle of Sr2RuO4 file
330 2020-01-17 16:00    Symmetry Breaking and Topology in Superfluid 3He file
329 2020-02-12 13:00    From inflation to new weak-scale file
328 2020-02-13 16:30    Enhanced Light-Matter Interactions in Graphene with Noble Metal Plasmonic Structures file
327 2020-02-20 16:00    Unconventional superconductivity in the locally non-centrosymmetric heavy-fermion CeRh2As2 file
326 2020-07-02 16:00    An irreversible qubit-photon coupling for the detection of itinerant microwave photons file
325 2020-08-17 20:00    Using magnetic tunnel junctions to compute like the brain file
324 2020-08-25 20:00    KAIST Global Forum for Spin and Beyond (Second Forum) file
323 2020-09-11 14:00    SRC Seminar file
322 2020-09-14 17:30    KAIST Global Forum for Spin and Beyond (Third Forum) file
321 2020-09-22 09:30    Physics and applications of soliton microcombs(Quantum- & Nano-Photonics) file
320 2020-09-24 09:00    (CAPP/IBS)Searching for Dark Matter with a Superconducting Qubit , Cryogenic Microwave Circuit Development at the NSTU file
319 2020-09-28 17:30    KAIST Global Forum for Spin and Beyond(Fourth Forum) file
318 2020-10-09 09:00    Quantum Many-Body Simulation file
317 2020-10-15 16:00    Graphene-based Josephson junction microwave bolometer file
316 2020-10-15 16:00    Towards resource-efficient and fault-tolerant quantum computation with nonclassical light
315 2020-10-15 17:00    Time crystals, quasicrystals, and time crystal dynamics in the superfluid universe file