No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
2016.06.13 17:16
장소 | #1323 (E6-2 1st fl.) |
---|---|
일시 | June 14, 2016 (Tue) 3PM |
연사 | Prof. Seungyong Hahn, Florida State University |
No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
June 14, 2016 (Tue) 3PM , #1323 (E6-2 1st fl.)
Prof. Seungyong Hahn, Florida State University
Abstract:
Firstly introduced in 2010, the No-Insulation (NI) high temperature superconductor (HTS) winding technique is expected to provide a practical solution for protection of HTS magnets, one of the most critical challenges in high-field (>20-T) HTS magnets. The key idea is to eliminate turn-to-turn insulation within an HTS coil and, in a quench event, current can be automatically diverted to the adjacent turns through turn-to-turn shorts. As a result, an NI magnet can be designed at a substantially higher operating current density than that of its insulated counterpart, thus the magnet becomes extremely compact, yet “self-protecting.” To date, over 100 NI HTS coils have been constructed and tested to have successfully demonstrated the self-protecting feature of NI coils. In a magnet level, a total of 9 NI magnets have been designed, constructed, and tested, including the recent 26-T 35-mm all-REBCO magnet that was designed by Hahn and constructed by SuNAM. To date, all of NI magnets survived after multiple consecutive quenches at their nominal operating temperature ranged 4.2 – 20 K. An NI magnet, however, has a major drawback of “charging delay” due to its turn-to-turn shorts. Several variations of the NI technique, including the Partial-No-Insulation (PNI) and the Metallic-Cladding-Insulation (MCI), are proposed by several groups, with which 5 – 50 times reduced charging delays were reported than those of their NI counterparts. This presentation provides a summary of the NI magnet technologies, relevant to design and construction of axion detection magnets, for the past 5 years, which include: 1) recent quench test results of two all-REBCO magnets, 26-T/35-mm and 7-T/78-mm; 2) a 9 T REBCO insert that reached a record high field of 40 T in a background field of 31 T; 3) “electromagnetic quench propagation” as the self-protecting mechanism of an NI magnet; 4) potential of the NI technique for the next-generation ultra high field magnets; 5) major challenges and potential pitfalls.
Contact: CAPP Administration Office(T.8166)
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
126 | April 15(Fri.) 11:00 | Online seminar | Prof.Jaekwang Lee (Department of Physics, Pusan National University) |
(응집물리 세미나) First-principles studies of polar oxides and their applications
![]() |
125 | April 13 (Fri.), 10am | #1323 (E6-2, 1st fl.) | Dr. Sungkun Hong |
Quantum meets Mechanics: from Quantum Information to Fundamental Research
![]() |
124 | April 11 (Wed), 4:00pm | #1323 (E6-2, 1st fl.) | Dr. Young-Sik Ra |
Non-Gaussian states of multimode light generated via hybrid quantum information processing
![]() |
123 | April 11 (Wed), 1:30pm | #1323 (E6-2, 1st fl.) | Dr. Yongsoo Yang |
Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level
![]() |
122 | April 11 (Thu.), 16:00 PM | #1323, E6-2 | Prof. Joo-Hyoung Lee, GIST |
Massive screening for cathode active materials using deep neural network
![]() |
121 | April 08(Fri.) 11:00 | E6-1 #1323 | Prof. Se-Young Jeong (Optics and Mechatronics Engineering , Pusan National University) |
(응집물리 세미나) Flat-surface-assisted physical phenomena occurring in single crystal metal thin film
![]() |
120 | Apr.19 (Fri.), 11:00 AM | #1323, E6-2 | Dr. Ji-Sang Park |
First-principles studies of semiconductors for solar cell applications
![]() |
119 | Apr. 9 (Fri.), 10:00 AM | Zoom webinar | Prof. Marko Loncar (Harvard University, USA) |
Integrated Lithium Niobate Photonics
![]() |
118 | Apr. 5 (Tue.), 4PM | E6-2. 1st fl. #1322 | Dr. Ara Go, Columbia University | A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space |
117 | Apr. 28 (Thu.) 3PM | #2501(E6-2. 2nd fl.) | Dr. Chang Hee Sohn, SEOUL NATIONAL UNIVERSITY | Lattice/Spin/Charge Coupling in 5d Pyrochlore Cd2Os2O7 |
116 | Apr. 28 (Fri.), 04:00 PM | #1323 (E6-2. 1st fl.) | Dr. Minkyung Jung Research Institute, DGIST | Carbon nanotubes coupled to superconducting impedance matching circuits |
115 | Apr. 28 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. JeongYoung Park Graduate School of EEWS, KAIST | Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion |
114 | Apr. 27, 2017 (Thu) 4:00 pm | Seminar Room(#1323, E6-2) | Prof.Donghan Lee (Chungnam National Univ.) | 반도체 양자점을 이용한 단광자 광원 |
113 | Apr. 2 (Fri.), 04:00 PM | Online(Zoom) | Dr. Heejun Yang (KAIST) | Van der Waals heterostructures for orbital gating-based phototransistors and electronic spectroscopy |
112 | Apr. 2 (Fri.), 02:30 PM | Online(Zoom) | Dr. Tae Hyun Kim (SNU) | Quantum computing and entanglement generation using trapped ions and photons |
111 | Apr. 19(Tue.), 2PM | #1323(E6-2. 1st fl.) | Prof. Mark Koepke, Department of Physics and Astronomy, West Virginia University, USA | Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability |
110 | Apr. 19(Mon) 19:00 | Zoom webinar | Chia-Ling Chien (Johns Hopkins, USA) |
Evidence of Electrical Switching in Antiferromagnets and Coherent Spin Pumping
![]() |
109 | Apr. 19 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Seok Kyun Son |
Graphene and hBN heterostructures
![]() |
108 | Apr. 19 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. YoungWoo Nam |
A family of finite-temperature electronic phase transitions in graphene multilayers
![]() |
107 | Apr. 13(Wed.) 10:30Am | E6 #1323/zoom | Mingu Kang (Max Planck POSTECH Korea Research Initiative) | Harnessing topology and correlations from singularities in 3d-kagome metals |