visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 B501, Room Red, KI bldg. 5nd fl. 
일시 2015/08/04, 11PM 
연사 Dr. Eric Jin Ser Lee(Univ. of Manitoba, Canada) 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada

 

 

During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 

 

The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 

 

The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.

 

Contact: Prof. YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr)

 

 

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
95 April 23 (Tue.), 4:00 PM  #1323, E6-2  Prof. Johan Chang  From Mott physics to high-temperature superconductivity file
94 April 13 (Fri.), 10am  #1323 (E6-2, 1st fl.)  Dr. Sungkun Hong  Quantum meets Mechanics: from Quantum Information to Fundamental Research file
93 April 11 (Wed), 4:00pm  #1323 (E6-2, 1st fl.)  Dr. Young-Sik Ra  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
92 April 11 (Wed), 1:30pm  #1323 (E6-2, 1st fl.)  Dr. Yongsoo Yang  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
91 April 11 (Thu.), 16:00 PM  #1323, E6-2  Prof. Joo-Hyoung Lee, GIST  Massive screening for cathode active materials using deep neural network file
90 Apr.19 (Fri.), 11:00 AM  #1323, E6-2  Dr. Ji-Sang Park  First-principles studies of semiconductors for solar cell applications file
89 Apr. 5 (Tue.), 4PM  E6-2. 1st fl. #1322  Dr. Ara Go, Columbia University  A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space
88 Apr. 28 (Thu.) 3PM  #2501(E6-2. 2nd fl.)  Dr. Chang Hee Sohn, SEOUL NATIONAL UNIVERSITY  Lattice/Spin/Charge Coupling in 5d Pyrochlore Cd2Os2O7
87 Apr. 28 (Fri.), 04:00 PM  #1323 (E6-2. 1st fl.)  Dr. Minkyung Jung Research Institute, DGIST  Carbon nanotubes coupled to superconducting impedance matching circuits
86 Apr. 28 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. JeongYoung Park Graduate School of EEWS, KAIST  Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion
85 Apr. 27, 2017 (Thu) 4:00 pm  Seminar Room(#1323, E6-2)  Prof.Donghan Lee (Chungnam National Univ.)  반도체 양자점을 이용한 단광자 광원
84 Apr. 19(Tue.), 2PM  #1323(E6-2. 1st fl.)  Prof. Mark Koepke, Department of Physics and Astronomy, West Virginia University, USA  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
83 Apr. 19 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Seok Kyun Son  Graphene and hBN heterostructures file
82 Apr. 19 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. YoungWoo Nam  A family of finite-temperature electronic phase transitions in graphene multilayers file
81 Apr. 12 (Tue.), 4 PM  E6-2. 1st fl. #1323  Dr. Jeehoon Kim, POSTECH  Confinement of Superconducting Vortices in Magnetic Force Microscopy
80 Apr. 09 (Mon.), 11:00 AM  E6-2. 1st fl. #1323  Dr. Seung-Sup B. Lee  Doublon-holon origin of the subpeaks at the Hubbard band edges file
79 Apr. 08 (Fri.), 4:00 PM  E6-2. 5st fl. #1501  Dr. Changyoung Kim, SEOUL NATIONAL UNIV.  Spectroscopic studies of iron-based superconductors : what have we learned?
78 Apr. 08 (Fri.), 13:30 PM  E6-2. 1st fl. #1501  Dr. Yunkyu Bang, Chonnam National Univ.  Theoretical Overview of Iron-based superconductors and its future
77 Apr. 01 (Fri.) 4:15 PM  E6-2. 1st fl. #1501  Dr. JONG SOO LIM, KIAS  Cotunneling drag effect in Coulomb-coupled quantum dots
76 Apr. 01 (Fri.) 2:30 PM  E6-2. 1st fl. #1501  Dr. KICHEON KANG, Chonnam National University  Interference of single charged particles without a loop and dynamic nonlocality