visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-11-03 16:00 
일시 Nov. 3 (Fri.), 4:00 PM 
장소 #1323 (1st fl., E6-2.) 
연사 Dr. SungDae Ji (Max Planck POSTECH/Hshinchu Center (MPK)) 

The seminal work of Anderson triggered a great deal of theoretical and experimental efforts to search for the novel quantum spin liquid (QSL) states in matters, and it has become one of central issues in contemporary condensed matter physics. The QSL state, a long-range quantum entangled state, is represented by a topological order and fractionalization of constituent magnetic moments. While the most QSL states have been described by deconfined spinons as an elementary excitation in frustrated magnets, Kitaev’s QSL state is exactly derived by fractionalizing the spin excitation into Majorana fermions in a two-dimensional honeycomb lattice, the so-called Kitaev lattice, with the ansatz of bond dependent Ising-like spin interaction. In the past decade, experimental realization of the fascinating Kitaev honeycomb QSL model has been eagerly pursued. In this talk, I will present the experimental evidences of fractionalized Majorana fermions in a high quality α-RuCl3 single crystal. Neutron and x-ray diffraction measurements reveal that the low-temperature crystal structure forms the perfect Ru-honeycomb lattice, which provides an ideal platform for the Kitaev honeycomb quantum spin lattice. Extensive thermodynamic and neutron spectroscopic measurements directly proved fractionalized Majorana fermion excitations as a result of thermal fractionalization of Jeff = ½ pseudospins, which is well reproduces by numerical predictions obtained from the Kitaev model.

 

20171103_지성대.pdf

번호 날짜 장소 제목
446 2022-03-28 16:00  E6, #1501  Ultimate-density atomic semiconductor via flat bands
445 2022-03-07 16:00  E6, #1501  Climate Physics and Modelling(우리말강의)
444 2022-05-19 15:00  online  (광학분야 특별세미나)Development of a multimodal optical system for improved disease diagnosis
443 2022-05-19 15:00  online  (광학분야 특별세미나)Development of a multimodal optical system for improved disease diagnosis
442 2022-04-11 16:00  E6, #1501  Emergence of Statistical Mechanics in Quantum Systems
441 2022-04-25 16:00  E6, #1501  Ultrafast electron beam, a tool to explore the nanoscopic world of materials(우리말강의)
440 2022-04-04- 16:00  E6, #1501  New paradigms in Quantum Field Theory
439 2022-05-10 16:00  E6 1323  (광학분야 특별세미나)Testing quantum thermodynamics using quantum optics
438 2022-04-14 16:00  E6 1323  (광학분야 특별세미나)Holographic tomography of dielectric tensors at optical frequency
437 2022-05-26 16:00  E6 1323  (광학분야 특별세미나)Topological photonic devices
436 2022-04-28 16:00  E6 1323  (광학분야 특별세미나)Adiabaticity and symmetry in optical waveguide design
435 2022-03-31 16:00  online  (광학분야 특별세미나)Ultrafast time-resolved spectroscopy in topological materials
434 2016-09-21 16:00  E6-2. #2502(2nd fl.)  Entanglement probe of two-impurity Kondo physics
433 2016-04-18 15:30  KI빌딩(E4), 강의실 B501 (5F)  First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
432 2022-05-02 16:00  E6, #1501  What can we learn from the history of science and technology?(우리말강의)
431 2022-05-23 16:00  E6, #1501  Novel electronic transport in topological van der Waals magnets
430 2022-05-30 16:00  E6, #1501  Light manipulation using 2D layered semiconductors
429 2022-05-09 16:00  E6, #1501  Searching for new electronic properties in correlated material flatland
428 2022-05-16 16:00  E6, #1501  Design synthetic topological matter with atoms and lights
427 2016-05-17 11:00  창의학습관(E11), 406호  The CERN Resonant WISP Search: Development, Results and Lesson-Learned