visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-08-04 11:00 
일시 2015/08/04, 11PM 
장소 B501, Room Red, KI bldg. 5nd fl. 
연사 Dr. Eric Jin Ser Lee(Univ. of Manitoba, Canada) 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada

 

 

During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 

 

The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 

 

The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.

 

Contact: Prof. YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr)

 

 

번호 날짜 장소 제목
267 2018-07-27 15:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Muon g-2 in the 2HDM and MSSM: comprehensive numerical analysis and absolute maxima file
266 2018-07-27 15:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Muon g-2 in the 2HDM and MSSM: comprehensive numerical analysis and absolute maxima file
265 2019-07-30 16:00  #1323, E6-2  Dirac fermions and flat bands in correlated kagome metals file
264 2019-07-31 16:00  E6-2, #1323  Features of ballistic superconducting graphene file
263 2019-07-08 14:00  E6, #1322  Ultrabroadband squeezed pulses and their relation to relativity file
262 2018-07-09 14:00  #1323, E6-2  The principles of collective learning file
261 2017-07-14 15:00  #1323 (E6-2. 1st fl.)  Chiral anomaly in disordered Weyl semimetals file
260 2016-06-01 16:00  #1323(E6-2 1st fl.)  Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets
259 2023-06-22 16:00  E6-2,1323  [High Energy Physics Seminar] The Branes Behind Generalized Symmetry Operators
258 2021-06-22 17:00  Zoom webinar  Spintronics meets Quantum Materials file
257 2019-06-24 11:00  E6-2, #1323  Topological photonic anomalies file
256 2019-06-28 14:00  E6-2, #1322  1st Research-exchange meeting of computational material physics file
255 2021-06-08 10:00  Zoom webinar  Photonic crystal devices for sensing file
254 2018-06-01 11:00  E6-2. 1st fl. #1323  Topological phases in low-dimensional quantum materials file
253 2023-06-01 16:00  E6-2 #1323  (광학분야 세미나)Quantum sensing using a squeezed light from hot Rb vapor
252 2016-06-01 10:30  BK21 Conference Room (#1318, E6-2)  Welcome to Nature Photonics
251 2022-06-10 14:30  E6-2. 1st fl. #1323  Combinatorial strategy for condensed matter physics: study on rare earth hexaborides thin films file
250 2022-06-10 16:00  E6-2. 1st fl. #1323  Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file
249 2022-06-10 11:00  Online seminar  Record-quality two-dimensional electron systems file
248 2021-06-11 14:30  Online seminar  Engineering sound waves and vibrations in multi-mode nanomechanical systems file