visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-10-28 11:00 
일시 Oct. 28 (Fri), 11:00AM 
장소 E6-2 #1323 
연사 김수란(경북대 물리교육과 교수) 
세미나 영상은 아래 링크로 확인 바랍니다. (공개기한: 2023.10.27까지)
 
o 일시: 2022. 10. 28(금)  11:00
o 장소: E6-2 Room 1323
o Zoom Link: https://kaist.zoom.us/j/83127228653  회의 ID:  831 2722 8653
 
o 연사: 김수란 교수(경북대학교 물리교육과)
o 강연주제: Machine-Learning-Guided Prediction Models and Materials discovery for high Tc Cuprates
Abstract
Cuprates have been at the center of long debate regarding their superconducting mechanism; therefore, predicting the critical temperatures of cuprates remains elusive. We demonstrate herein, using ab initio computations, a new trend suggesting that the cuprates with stronger out-of-CuO2-plane chemical bonding between the apical anion (O, Cl) and apical cation (e.g., La, Hg, Bi, Tl) are generally correlated with higher Tc;max in experiments. Also, using machine learning, we predict the maximum superconducting transition temperature (Tc,max) of hole-doped cuprates and suggest the functional form for Tc,max with the root-mean-square-error of 3.705 K and R2 of 0.969. We have found that the Bader charge of apical oxygen, the bond strength between apical atoms, and the number of superconducting layers are essential to estimate Tc,max. Furthermore, we predict the Tc,max of hypothetical cuprates generated by replacing apical cations with other elements. Among the hypothetical structures, the cuprates with Ga show the highest predicted Tc,max values, which are 71, 117, and 131 K for one, two, and three CuO2 layers, respectively. These findings suggest that machine learning could guide the design of new high-Tc superconductors in the future.
Attached: C.V
 
Inquiry: Prof. Se Kwon Kim(sekwonkim@kaist.ac.kr) / Prof. Hee Jun Yang (h.yang@kaist.ac.kr)
번호 날짜 장소 제목
266 2018-07-27 15:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Muon g-2 in the 2HDM and MSSM: comprehensive numerical analysis and absolute maxima file
265 2019-07-30 16:00  #1323, E6-2  Dirac fermions and flat bands in correlated kagome metals file
264 2019-07-31 16:00  E6-2, #1323  Features of ballistic superconducting graphene file
263 2019-07-08 14:00  E6, #1322  Ultrabroadband squeezed pulses and their relation to relativity file
262 2018-07-09 14:00  #1323, E6-2  The principles of collective learning file
261 2017-07-14 15:00  #1323 (E6-2. 1st fl.)  Chiral anomaly in disordered Weyl semimetals file
260 2016-06-01 16:00  #1323(E6-2 1st fl.)  Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets
259 2023-06-22 16:00  E6-2,1323  [High Energy Physics Seminar] The Branes Behind Generalized Symmetry Operators
258 2021-06-22 17:00  Zoom webinar  Spintronics meets Quantum Materials file
257 2019-06-24 11:00  E6-2, #1323  Topological photonic anomalies file
256 2019-06-28 14:00  E6-2, #1322  1st Research-exchange meeting of computational material physics file
255 2021-06-08 10:00  Zoom webinar  Photonic crystal devices for sensing file
254 2018-06-01 11:00  E6-2. 1st fl. #1323  Topological phases in low-dimensional quantum materials file
253 2023-06-01 16:00  E6-2 #1323  (광학분야 세미나)Quantum sensing using a squeezed light from hot Rb vapor
252 2016-06-01 10:30  BK21 Conference Room (#1318, E6-2)  Welcome to Nature Photonics
251 2022-06-10 14:30  E6-2. 1st fl. #1323  Combinatorial strategy for condensed matter physics: study on rare earth hexaborides thin films file
250 2022-06-10 16:00  E6-2. 1st fl. #1323  Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file
249 2022-06-10 11:00  Online seminar  Record-quality two-dimensional electron systems file
248 2021-06-11 14:30  Online seminar  Engineering sound waves and vibrations in multi-mode nanomechanical systems file
247 2021-06-11 16:00  Online seminar  Pseudogap in surface-doped black phosphorus file