visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 B501, Room Red, KI bldg. 5nd fl. 
일시 2015/08/04, 11PM 
연사 Dr. Eric Jin Ser Lee(Univ. of Manitoba, Canada) 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada

 

 

During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 

 

The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 

 

The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.

 

Contact: Prof. YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr)

 

 

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
60 Nov. 8 (Wed.), 1:00 PM  #5318 (E6-2. 5th fl.)  Prof. Y. Matsuda Department of Physics, Kyoto University  “Emergent exotic quasiparticles in quantum spin liquids” file
59 Nov. 9 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Pilkyung Moon  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
58 Nov. 9 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Donghun Lee  Quantum sensing and imaging with diamond defect centers for nano-scale spin physics file
57 November 1 (Thu.), 16:00 PM  #1323, E6-2  Dr. KyeoReh Lee  Direct holography from a single snapshot file
56 November 14 (Thu.), 16:00 PM  #1323, E6-2  Prof. Ji-Hun Kang  Semi-classical model of polariton propagation newfile
55 November 21 (Wed.), 15:00 PM  #1323, E6-2  Prof. Seongshik Oh  Engineering topological quantum physics at the atomic scale file
54 November 29 (Thu.), 16:00 PM  #1323, E6-2  Dr. Kee suk Hong  양자 칸델라 실현을 위한 단일 광자 발생장치 개발 file
53 November 5 (Tue.), 4:00 PM  #1323, E6-2  Dr. Shik Shin  Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
52 November 7 (Thu.), 16:00 PM  #1323, E6-2  Prof. Je-Hyung Kim  Integrated quantum photonics with solid-state quantum emitters file
51 November 8 (Thu.), 16:00 PM  #1323, E6-2  이종완 박사  Conformality lost file
50 Oct. 07 (Fri), 1:30 PM  E6-2. #1323(1st fl.)  Dr. Suk Bum Chung, IBS-CCES , Seoul National University  “Symmetry and topology in transition metal dichalcogenide?”
49 Oct. 07 (Fri), 4:00 PM  E6-2. #1323(1st fl.)  Dr. Choong Hyun Kim,IBS-CCES, Seoul National University  “Tilt engineering of 4d and 5d transition metal oxides?”
48 Oct. 10(Tue) 4PM  E6-2 #1323  김성웅 교수 (성균관대학교 에너지과학과)  Discovery of New 2D Materials with Diverse Physical Properties
47 Oct. 12 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Daniel Kyungdeock Park  Quantum Advantage in Learning Parity with Noise file
46 Oct. 12 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. HyungWoo Lee  Direct observation of a two-dimensional hole gas at oxide interfaces file
45 Oct. 17th (Mon) 11:00 AM  #1323,(E6-2, 1st fl.)  Nguyen Quang Liem, Institute of Materials Science, VAST, Viettnam  IMS and examples of the studies on optoelectronic materials
44 Oct. 18 (Tue.), 1:30 PM  1st fl. #1323(E6-2)  Dr. Chan-Ho Yang, Department of Physics, KAIST  "Visualization of oxygen vacancy in motion and the interplay with electronic conduction"
43 Oct. 18 (Tue.), 3PM  E6-2. 1st fl. #1323  Dr. JunHo Suh, Korea Research Institute of Standards and Science  “Hybrid quantum systems with mechanical oscillators”
42 Oct. 25 (Fri), 15:00 ~  #1323, E6-2  Daesu Lee,Junwoo Son,MyungJoon Han ,Siheon Ryee,Eun-Gook Moon  Physics Seminar file
41 Oct. 27th(Thu) 4PM  #1323(E6-2)  Dr. 이 강 희, KAIST, Mechnical Engineering  Terahertz Metal Optics