visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Isostatic magnetism

2016.07.04 22:02

Physics 조회 수:1525

날짜 2016-07-08 11:00 
일시 Jul. 08 (Fri.) 11:00 AM 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.) 

Isostatic magnetism

 

Jul. 08 (Fri.) 11:00 AM, #1323(E6-2. 1st fl.)
Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.)

 

Abstract: Recently, a peculiar state of mechanical (phonon) systems, known as isostatic lattices, was both proposed[1] and fabricated as a metamaterial[2]. This state is on the brink of mechanical collapse and remarkably has special topological properties that guarantee the existence of soliton-like zero modes or edge modes with open boundary conditions. It is unlikely these topological phonons will be found in any solid state system since they are not on the brink of mechanical collapse. In this talk, I will discuss my group's research[3] into extending this physics to magnetic systems where ``mechanical collapse'' is replaced with the loss of magnetic order due to frustration.  I will prove mathematically that indeed an isostatic magnetic exists, a proof that remarkably employs a supersymmetry between magnons and an invented fermionic degree of freedom I have dubbed magninos. I will conclude with a discussion of the possibilities of finding an isostatic magnet among the kagome and distorted kagome families of antiferromagnets and the potential new phenomena that may be observed in such a material.


[1] C. L. Kane and T. C. Lubensky, "Topological boundary modes in isostatic lattices", Nature Physics 10, 39 (2013).
[2] B. G. Chen, N. Upadhyaya, V. Vitelli, "Non-linear conduction via solitons in a topological mechanical insulator", PNAS 111, 13004 (2014).
[3] M. J. Lawler "Supersymmetry protected phases of isostatic lattices and kagome antiferromagnets", Unpublished, see arXiv:1510.03697.


Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

번호 날짜 장소 제목
171 2018-07-12 17:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6)  The MilliQan Experiment: Search for Milli-Charged Particles at the LHC
170 2018-07-09 14:00  #1323, E6-2  The principles of collective learning file
169 2018-07-02 15:00  Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus  High Precision Magnetic Field Measurement for the Muon g-2 Experiment file
168 2018-06-22 16:00  #1323, E6-2  Tuning functional properties of BiFeO3 films using strain and growth chemistry file
167 2018-06-22 10:00  E6-6, Lecture Room 119 (1F)  Success in Research Career file
166 2018-06-18 10:00  E6-2. 2nd fl. #2502  Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms file
165 2018-06-14 10:00  E6-2, 2nd fl. #2502  Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation file
164 2018-06-01 11:00  E6-2. 1st fl. #1323  Topological phases in low-dimensional quantum materials file
163 2018-05-31 16:00  #1323, E6-2  Dynamic control of optical properties with gated-graphene metamaterials file
162 2018-05-29 16:00  #1323, E6-2  Investigation on metal nanostructure/semiconductor junction and its applications file
161 2018-05-17 13:30  E6-2. 1st fl. #1323  Quantum Spin Liquid in Kitaev Materials file
160 2018-05-11 16:00  E6-2. 1st fl. #1323  암페어 단위 재정의와 단전자 펌프 소자 개발 file
159 2018-05-11 14:30  E6-2. 1st fl. #1323  Disordered Floquet topological insulators file
158 2018-05-09 16:00  #1323, E6-2  Recent advances in thermoelectric bulk composites file
157 2018-04-13 10:00  #1323 (E6-2, 1st fl.)  Quantum meets Mechanics: from Quantum Information to Fundamental Research file
156 2018-04-11 16:00  #1323 (E6-2, 1st fl.)  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
155 2018-04-11 13:30  #1323 (E6-2, 1st fl.)  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
154 2018-04-09 11:00  E6-2. 1st fl. #1323  Doublon-holon origin of the subpeaks at the Hubbard band edges file
153 2018-04-06 10:00  #2502, E6  Entanglement and thermalization in many-body systems: recent progress file
152 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file