visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-11-03 16:00 
일시 Nov. 3 (Fri.), 4:00 PM 
장소 #1323 (1st fl., E6-2.) 
연사 Dr. SungDae Ji (Max Planck POSTECH/Hshinchu Center (MPK)) 

The seminal work of Anderson triggered a great deal of theoretical and experimental efforts to search for the novel quantum spin liquid (QSL) states in matters, and it has become one of central issues in contemporary condensed matter physics. The QSL state, a long-range quantum entangled state, is represented by a topological order and fractionalization of constituent magnetic moments. While the most QSL states have been described by deconfined spinons as an elementary excitation in frustrated magnets, Kitaev’s QSL state is exactly derived by fractionalizing the spin excitation into Majorana fermions in a two-dimensional honeycomb lattice, the so-called Kitaev lattice, with the ansatz of bond dependent Ising-like spin interaction. In the past decade, experimental realization of the fascinating Kitaev honeycomb QSL model has been eagerly pursued. In this talk, I will present the experimental evidences of fractionalized Majorana fermions in a high quality α-RuCl3 single crystal. Neutron and x-ray diffraction measurements reveal that the low-temperature crystal structure forms the perfect Ru-honeycomb lattice, which provides an ideal platform for the Kitaev honeycomb quantum spin lattice. Extensive thermodynamic and neutron spectroscopic measurements directly proved fractionalized Majorana fermion excitations as a result of thermal fractionalization of Jeff = ½ pseudospins, which is well reproduces by numerical predictions obtained from the Kitaev model.

 

20171103_지성대.pdf

번호 날짜 장소 제목
213 2019-03-21 16:00  RM. 1323, E6-2  Spring 2019: Physics Seminar Serises file
212 2019-02-25 16:00  Rm. 1501 (E6)  Spring 2019: Physics Colloquium file
211 2019-02-21 16:00  #5313, E6-2  B-meson charged current anomalies - Theoretical status file
210 2019-01-23 16:00  Rm. C303, Creation Hall (3F), Munji Campus  Ultrasensitive Microwave Bolometer: Opportunity for Axion Detectors file
209 2019-01-09 16:00  E6-2. 2nd fl. #2501  Molecular Mott state in the deficient spinel GaV4S8 file
208 2019-01-07 15:00  E6-2. 2st fl. #2501  Many-Body Invariants for Multipoles in Higher-Order Topological Insulators file
207 2018-12-27 16:00  E6-2. 1st fl. #1323  Quantum Innovation (QuIN) Laboratory file
206 2018-12-26 16:00  E6-1. 3rd fl. #3434  Informal Workshop on Topology and Correlation file
205 2018-12-26 16:00  E6-2. 1st fl. #1323  Brane-like defect in 3D toric code file
204 2018-12-16 16:00  E6-2. 1st fl. #1323  Lectures on 2d Conformal Field Theory file
203 2018-12-11 16:00  E6-2. 1st fl. #1323  Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations file
202 2018-12-07 16:00  E6-2. 1st fl. #1323  Novel probes of interacting electrons in 2D systems file
201 2018-12-07 14:30  E6-2. 1st fl. #1323  Spin generation from heat and light in metals file
200 2018-11-29 16:00  #1323, E6-2  양자 칸델라 실현을 위한 단일 광자 발생장치 개발 file
199 2018-11-23 15:00  E6-2. 2st fl. #2501  Entanglement string and Spin Liquid with Holographic duality file
198 2018-11-22 15:00  E6 Room(#1323)  Experimental and Computational Study on Physical Properties based on Granular System file
197 2018-11-21 15:00  #1323, E6-2  Engineering topological quantum physics at the atomic scale file
196 2018-11-09 16:00  E6-2. 1st fl. #1323  Quantum sensing and imaging with diamond defect centers for nano-scale spin physics file
195 2018-11-09 14:30  E6-2. 1st fl. #1323  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
194 2018-11-08 16:00  #1323, E6-2  Conformality lost file