Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
2016.08.29 21:05
장소 | E6-2(1st fl.), #1323 |
---|---|
일시 | Sep. 02(Fri) 2:30 PM |
연사 | Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST |
Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
Sep. 02(Fri) 2:30 PM, E6-2(1st fl.), #1323
Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST
Abstract:
Heat, a measure of entropy, is largely perceived to be diffusive and transported incoherently by charge carriers (electrons and holes) and lattice vibrations (phonons) in a material. Because heat can be carried by many different (quasi-)particles, it is generally hard to spatially localize the transport of the thermal energy. Heat transport is thus considered to be a challenging means of the local probing of a material and of its electronic states. Recently, we have shown that coherent electron and heat transport through a point-like contact in the atomic force microscope set-up at the ultra-high vacuum condition produces an atomic Seebeck effect, which represents the novel imaging principle of surface wave functions with atomic resolution. The heat-based scanning Seebeck microscopy clearly contrasts to the vacuum tunneling-based scanning tunneling microscopy, a hitherto golden standard of imaging surface wave functions. We have found that the coherent transmission probabilities of electron and phonon across the tip-sample junction are equally important for the imaging capability of the scanning Seebeck microscope. Very recently, we have reported that abnormally enhanced nanoscale friction on ice-trapped graphene surface could be understood in terms of flexural phonon couplings between graphene and substrate (e.g. mica). Also, we have found that energetic tunneling electrons in scanning tunneling microscopy can cause chemical reactions at the single molecule level by locally exciting phonon modes of molecules (or nanoscale heating) under the tip through the inelastic electron-phonon scattering. In this talk, I will discuss how we theoretically explore nanoscale thermal physics including thermoelectric imaging, nanoscale friction, and single molecule chemical reaction, specifically in the setup of scanning probe microscopy.
Contact: Sung Jae Cho, Physics Dept., (sungjae.cho@kaist.ac.kr)
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
공지 | 2019/09/18 - 12/5 | Seminar Room #1323 | Prof. David Schuster and etc. | Fall 2019: Physics Seminar Serises |
공지 | 2019/09/02 - 12/09 | Seminar Room 1501 | 이호성 박사 (한국표준과학연구원) and etc. | Fall 2019: Physics Colloquium |
175 | Nov. 3 (Fri.), 4:00 PM | #1323 (1st fl., E6-2.) | Dr. SungDae Ji (Max Planck POSTECH/Hshinchu Center (MPK)) |
Expedition to the Kitaev Quantum Spin Liquid: Hunting for Majorana fermions
![]() |
174 | April 13 (Fri.), 10am | #1323 (E6-2, 1st fl.) | Dr. Sungkun Hong |
Quantum meets Mechanics: from Quantum Information to Fundamental Research
![]() |
173 | May 1 (Wed), 4:00 PM | #1323, E6-2 | Dr. Sungkyun Choi |
Raman and x-ray scattering study on correlated electron systems: two case examples
![]() |
172 | 2015/11/28, 10AM | E6-2, #1323 | Dr. Suyong Jung (Korea Research Institute of Standards and Science) | Electron Tunneling Spectroscopy of Single and Bilayer Graphene with Hexagonal Boron Nitride as Tunneling Barrier |
171 | 2016/03/11 4 PM | E6-2. 1st fl. #1501 | Dr. Tae-Hwan KIM (POSTECH) | Jan. Switching handedness of of chiral solitons in Z4 topological insulators |
170 | Mar. 29 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Taeyoung Choi |
Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM
![]() |
169 | Jun. 18 (MON), 10:00 AM | E6-2. 2nd fl. #2502 | Dr. Thibault VOGT |
Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms
![]() |
168 | October 16 (Tue.), 10:00 AM | #1323, E6-2 | Dr. Won-Ki Cho |
Capturing protein cluster dynamics and gene expression output in live cells
![]() |
167 | 2015/11/10, 4PM | E6-2, #1323 | Dr. Woosuk Bang (Physics division, Los Alamos National Laboratory) | Rapid heating of matter using high power lasers |
166 | 2015/12/01, 4PM | E6-2, #1323 | Dr. Yeong Kwan Kim(Lawrence Berkeley National Laboratory, USA) | Introducing extra dimensions to spectroscopic studies of advanced quantum materials |
» | Sep. 02(Fri) 2:30 PM | E6-2(1st fl.), #1323 | Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST | Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction |
164 | Sep. 02(Fri) 4:00 PM | E6-2(1st fl) #1323 | Dr. Yong-Joo Doh, Department of Physics and Photon Science, GIST | Quantum Electrical Transport in Topological Insulator Nanowires |
163 | October 15 (Mon.), 16:00 PM | #1323, E6-2 | Dr. Yongjoo Baek |
Universal properties of macroscopic current-carrying systems
![]() |
162 | April 11 (Wed), 1:30pm | #1323 (E6-2, 1st fl.) | Dr. Yongsoo Yang |
Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level
![]() |
161 | May. 12 (Fri.), 01:30 PM | E6-2. 1st fl. #1323 | Dr. Young Kuk Kim | Topological Dirac insulator |
160 | April 11 (Wed), 4:00pm | #1323 (E6-2, 1st fl.) | Dr. Young-Sik Ra |
Non-Gaussian states of multimode light generated via hybrid quantum information processing
![]() |
159 | May 13 (Fri.), 1:30 PM | E6. #1501(1st fl.) | Dr. Young-Woo Son, Dept. of Physics, KIAS | Aperiodic crystals in low dimensions |
158 | Mar. 16 (Fri.), 04:0 PM | E6-2. 1st fl. #1323 | Dr. YoungDuck Kim |
Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics
![]() |
157 | 2015/11/06, 4:30 PM | E6-2, #5318 | Dr. Youngkuk Kim (University of Pennsylvania) | Topological Dirac line nodes in centrosymmetric semimetals |
156 | Apr. 19 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. YoungWoo Nam |
A family of finite-temperature electronic phase transitions in graphene multilayers
![]() |