• HOME
  • >
  • 소식
  • >
  • 세미나
장소 E6-2. 1st fl. #1323 
일시 Oct. 18 (Tue.), 3PM 
연사 Dr. JunHo Suh, Korea Research Institute of Standards and Science 

“Hybrid quantum systems with mechanical oscillators”


Dr. JunHo Suh, Korea Research Institute of Standards and Science
Oct. 18 (Tue.), 3PM, E6-2. 1st fl. #1323



Quantum machines are actively pursued to harness quantum coherence and entanglement as new resources for information processing and precision sensing. Among those activities, hybrid quantum systems are recognized as a promising platform for building multi-functional quantum machines by connecting quantum states in different physical domains, and mechanical oscillators are accepted as important components in the quantum hybrids[1]. In this talk, I review recent examples of hybrid quantum systems involving mechanical oscillators strongly coupled to electrons and photons. In the first part, a quantum electro-mechanical system is introduced. A cooper-pair box qubit is electrostatically coupled to a nanomechanical oscillator. A dispersive measurement of qubit states is achievable through high-quality read-out of nanomechanical motion, which also maintains qubit coherence proved via microwave spectroscopy and Landau-Zener interference. In the second part, mechanical oscillators coupled to microwave photons, or "quantum opto-mechanical systems", are described, where radiation pressure mediates the interaction between photons and the mechanical oscillator.  Photons act as a probe for mechanical motion in this case, and a fundamental limit in measurement sensitivity arises due to Heisenberg's uncertainty principle, as known as quantum standard limit(SQL). By carefully measuring mechanical motion in quadratures, we identify the fundamental back-action from photons which mandates SQL, and also demonstrate a novel scheme known as quantum non-demolition measurement (QND) which allows a precise measurement without back-action in one quadrature of motion[3]. When the coupling between the microwave photons and mechanical motion is strong enough, the back-action from photons start modifying quantum noise in mechanical oscillators and produced mechanical quantum squeezed states[4,5]. Finally, it is expected that one could approach ultra-strong coupling regime as photon-mechanical oscillator coupling strength increases, where single photon coupled to mechanical motion dominates the hybrid system. Mechanical states in the ultra-strong coupling limit deviate from well-known number states which could open a new paradigm for controlling mechanical quantum states[6]. A quantum dot system embedded in a nanowire is proposed to be a candidate to reach this interesting regime, and our recent progress toward this direction is dissussed.


[1] Kurizki, PNAS 112, 3866-3873 (2015).
[2] LaHaye, Nature 459, 960-964 (2009).
[3] Suh, Science 344, 1262-1265 (2014).
[4] Wollman, Science 349, 952-955 (2015).
[5] Lei, PRL 117, 100801 (2016).
[6] Nation, PRA 93, 022510 (2016).


Contact: SunYoung Choi, (
Center for Quantum Coherence in Condensed Matter, KAIST

번호 일시 장소 연사 제목
224 May 31 (Fri.), 11:00 AM  #1323, E6-2  Prof. Guido Burkard  Cavity QED with Spin Qubits file
223 2015/07/23,1:30PM  E4, B401  Prof. Gilles Lérondel (Univ. of Technology of Troyes)  Enhanced ZnO based UV photonics and related applications file
222 October 15, 2020 (Thursday  CAPP Seminar Room #C303, Creation Hall (3F), KAIST Munji Campus  Prof. Gil-Ho Lee (POSTECH)  Graphene-based Josephson junction microwave bolometer file
221 February 21 (Thu.), 16:00 PM  #5313, E6-2  Prof. Diptimoy Ghosh  B-meson charged current anomalies - Theoretical status file
220 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises file
219 2016/03/07-06/13  E6, 1501  Prof. David Helfman(KAIST) 외  Physics Colloquium : 2016 Spring file
218 2015/03/04, 12PM  1323호, E6-2  Prof. Choi Hak-Soo(Harvard)  Bioimaging and Biosensing Using Near-Infrared Fluorescence file
217 May. 3 (Fri), 11:00 AM  E6-2. 2st fl. #2502  Prof. Changhee Sohn  Exotic Magnetism file
216 2014/12/22, 2PM  E6, Rm1319  Prof. Changbong Hyeon (KIAS)  Dynamics of molecular motors: Power stroke vs Brownian ratchet file
215 May 30 (Thu.), 16:00 PM  #1323, E6-2  Prof. Chang-Hee Cho  Tuning the excitonic properties of semiconductors with light-matter interactions file
214 July 9 (Mon.), 14:00 PM  #1323, E6-2  Prof. Cesar A. Hidalgo, MediaLab, MIT  The principles of collective learning file
213 Mar25(Thur), 04:00PM  Online Seminar (Zoom)  Prof. Atsushi Tokiyasu (Tohoku Univ.)  Search for dark matter axion with Rydberg atoms file
212 Aug. 4, 2016 (Thu.), 2:30 pm  KAIST Natural Science Building (E6-5), EDU 3.0 Room(1st fl.)  Prof. Argyris Nicolaidis  Relational Logic (with applications to Quantum Mechanics, String Theory, Cosmology, Neutrino Oscillations, Statistical Mechanics)
211 2019. 8. 22 4PM & 8. 23 3PM  #1323, E6-2  Prof. Andrew N Cleland  Physics and Applications in Nanoelectronics and Nonomechanics file
210 Dec.9(Wed), 10:00AM  Zoom  Prof. Andrew Geraci (Northwestern University)  Searching for the QCD axion with the ARIADNE experiment file
209 8/19 (Mon), 10:00~11:30, 8/22 (Thur), 10:00~11:30  Rm. 1322, E6-2  Nicolas Treps  Tutorials on Multimode Quantum Optics in the Continuous Variable Regime file
208 Oct. 17th (Mon) 11:00 AM  #1323,(E6-2, 1st fl.)  Nguyen Quang Liem, Institute of Materials Science, VAST, Viettnam  IMS and examples of the studies on optoelectronic materials
207 Nov.26(Thu), 04:00PM  Online(Zoom)  Myung-Ki Kim  2020 가을학기 광학분야 특별세미나(Light Engineering Beyond the Diffraction Limit)
206 Dec. 11 (Fri.), 02:30 PM  online  Myung Hwa Jung(Sogang Univ.)  Antisymmetric interlayer exchange coupling in magnetic multilayers
205 January 23, 2019  Rm. C303, Creation Hall (3F), Munji Campus  Mikko Mottonen  Ultrasensitive Microwave Bolometer: Opportunity for Axion Detectors file