visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2021-06-11 14:30 
연사  
장소 Online seminar 

 

SRC Seminar

 

 

Engineering sound waves and vibrations in multi-mode nanomechanical systems

 

Dr. Jin Woong Cha

Quantum Technology Institute, KRISS

 

Jun. 11 (Fri.), 02:30 PM

Online seminar

https://kaist.zoom.us/j/89283252628
회의 ID: 892 8325 2628

암호: 916514

 

 

 

 

Abstract:

Nanoscale mechanical systems provide versatile physical interfaces with their ability to interact with various physical states, for example, electromagnetic fields (e.g., microwaves and optical light) and quantum states (e.g., spins and electrons). Therefore, engineering nanoscale sound waves and vibrations in nanomechanical systems is essential for a wide range of applications in sensing and information processing both in the classical and quantum regimes. My talk will focus on two different nanomechanical platforms I have recently worked on. In the first part of my talk, I will discuss a unique nanomechanical platform called nanomechanical lattices which enable electrically tunable phonon propagation dynamics [1] and topologically protected phonon transport [2] at MHz frequencies. This platform consists of arrays of mechanically coupled, free-standing silicon-nitride nanomechanical membranes that support propagating flexural elastic waves. For the second part of my talk, I will describe our recent studies on the cavity electromechanics in a superconducting nanoelectromechanical resonator implementing superconducting niobium [3]. This system demonstrates various optomechanical phenomena arising from the interaction of nanomechanical motions and microwave fields (e.g., phonon cooling and amplification, optomechanically induced reflection) and can be used in various applications such as quantum transducers. I will then conclude my talk by briefly describing our ongoing work at KRISS.

 

Reference:

[1] J. Cha, et al. Nature Nanotechnology 13, 1016-1020 (2018)

[2] J. Cha, et al. Nature 564, 229-233 (2018)

[3] J. Cha, et al. Nano Letters 21, 1800-1806 (2021)

 

 

Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

 

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
505 2022-01-26 13:00    An Introduction to Cohomology groups file
504 2018-10-12 16:00    Direct observation of a two-dimensional hole gas at oxide interfaces file
503 2022-11-18 14:30    Kondo cloud condensation in a highly-doped semiconductor metal file
502 2025-05-01 16:00  Dr. Inwook Kim (Lawrence Livermore National Laboratory)  BSM Physics Search with Quantum Sensors file
501 2018-12-26 16:00    Brane-like defect in 3D toric code file
500 2019-07-31 16:00    Features of ballistic superconducting graphene file
499 2018-07-12 17:00    The MilliQan Experiment: Search for Milli-Charged Particles at the LHC
498 2016-12-09 13:30    Entanglement area law in strongly-correlated systems
497 2023-11-23 16:00    Deciphering the Enigma of Quantum Materials by X-ray Scattering and Spectroscopy
496 2019-10-16 16:00    Emergent black holes and monopoles from quantum fields file
495 2022-07-14 13:30    Electronic structure and anomalous transport properties of topological materials by first principle calculation
494 2016-11-24 16:00    Harmonic oscillator physics with single atoms in a state-selective optical potential
493 2015-09-07 15:00    Advanced Optical Materials and Devices at NRL
492 2021-05-14 16:00    Spatial and temporal separation of environmental dephasing sources from solid-state quantum emitters file
491 2016-04-12 16:00    Confinement of Superconducting Vortices in Magnetic Force Microscopy
490 2017-04-28 14:30    Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion
489 2015-12-11 15:45    Dynamical mean field theory studies on heavy fermion system
488 2023-10-19 11:00    Emergent functionalities of iridium oxide films with different growth orientation file
487 2023-06-26 11:00    Quantum computing on magnetic racetracks with flying domain wall qubits
486 2019-04-19 11:00    First-principles studies of semiconductors for solar cell applications file