visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-04-01 16:00 
일시 Apr. 1(Fri.), 04:00 PM 
장소 Zoom webinar 
연사 Dr. Kayoung Lee (KAIST) 

 

SRC Seminar

 

 

High-field Electron Transport and Interaction Induced Phenomena in 2D Materials

 

Dr. Kayoung Lee

Electrical Engineering, KAIST

 

Apr. 1 (Fri.), 04:00 PM

https://kaist.zoom.us/j/89879980781
회의 ID: 898 7998 0781

암호: 808795

 

 

 

Abstract:

In this talk, I will present our research that spans from fundamental electron transport mechanisms to interaction induced phenomena in low-dimensional electron systems, each of which is in dire need of

innovation to incubate new material-based devices with high performance. Using double bilayer graphene heterostructures, separated by a hexagonal boron nitride dielectric, we studied interactions

between the two bilayers, where the interlayer spacing is smaller than the intra-layer particle spacing. I will present frictional drag probed on the double bilayer systems, a phenomenon in which charge current

flowing in one (drive) layer induces a voltage drop in the opposite (drag) layer. At temperatures (T) lower than 10 K, we observe a large anomalous negative drag near the drag layer charge neutrality, which increases dramatically with reducing T, strikingly becoming comparable to the layer resistivity at the lowest T = 1.5 K. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of the drag. The talk will then move on to our recent investigation into electron transport and drift velocity saturation at high electric field in emerging 2D InSe semiconductor with a mobility >2700 cm2/Vs at room temperature. I will report the first measured saturation velocity of 2D InSe exceeding 2 x 107 cm/s. Employing our modified optical phonon emission model to explain the drift velocity saturation at high electric field, we estimate the energy of InSe optical phonons.

 

 

Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

 

번호 날짜 장소 제목
169 2016-04-26 16:00  #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
168 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
167 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
166 2022-10-06 13:00  E6 #1323  Counting States with Global Symmetry
165 2019-06-12 15:00  Rm# 1323, E6-2  The relation between free and interacting fermionic SPT phases file
164 2016-09-29 16:00  E6-2. #2501(2nd fl.)  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
163 2017-04-28 16:00  #1323 (E6-2. 1st fl.)  Carbon nanotubes coupled to superconducting impedance matching circuits
162 2023-07-11 11:00  E6-2, #1323  Ordered phases, non-Fermi liquid, and quantum criticality driven by entanglement between multipoles and conduction electrons
161 2019-07-30 16:00  #1323, E6-2  Dirac fermions and flat bands in correlated kagome metals file
160 2017-11-03 14:30  #1323 (1st fl., E6-2.)  Quantum Resistor-Capacitor Circuit with Majorana Edge States file
159 2019-09-10 15:00  E6-2. 1st fl. #1323  Two-Stage Kondo Effect file
158 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
157 2015-11-23 13:30  E6-2, #1323  What's Beyond the Standard Model? Lessons from Run I and what might come in Run II
156 2016-07-08 11:00  #1323(E6-2. 1st fl.)  Isostatic magnetism
155 2016-05-19 15:00  May 19, 2016 (Thur.) 3PM,  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
154 2023-06-22 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP Seminar] The muon g-2 puzzle file
153 2015-10-15 10:00  E6-2, 5th fl. #5318  Development of Large-Bore, High Field Magnets at the NHMFL
152 2017-03-24 14:30  #1323 (1st fl. E6-2).  Topological Dynamics
151 2018-10-26 16:00  #1323, E6-2  Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates file
150 2015-07-16 16:00  E6-2, 1318  Next-generation ultrafast laser technology for nonlinear optics and strong-field physics