visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2020-11-20 16:00 
연사  
장소 Online 

 

SRC Seminar

 

 

 

 

 

Coherent control of field gradient induced quantum dot spin qubits

 

 

 

Dr. Dohun Kim

 

Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University

 

 

 

Nov. 20 (Fri.), 04:00 PM

 

Online seminar

 

https://kaist.zoom.us/j/82243139535
회의 ID: 822 4313 9535
암호: 151742

 

 

 

 

 

 

 

Abstract:

 

The electron spin degree of freedom in solids form natural basis for constructing quantum two level systems, or qubits. The electron spin qubit offers a route for fast manipulation of spins using magnetic resonance or field gradient induced electric control, but generally suffers from dephasing due to strong coupling to the environment, especially nuclear spin bath, where decoherence dynamics is often non-Markovian and quasi-static. This talk will review experimental progress of fast GaAs based spin qubits and efforts to mitigate or even control the environment nuclear spin bath using hyperfine interaction. Starting from discussing general introduction to quantum transport measurements in quantum dots, circuit design, and need for high-throughput measurement methods for developing highly coherent and scalable qubit platform, I will focus on implementations of advanced quantum measurement and control protocols of singlet-triplet qubits including high fidelity singlet-shot measurements, Bayesian estimation-based adoptive control, and sequential Monte-Carlo method. In particular, we show that clever quantum control using FPGA-based hardware programming enables real time Hamiltonian parameter estimation actively suppressing quasi-static noise.

 

 

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
265 2019-11-01 14:30    Squeezing the best out of 2D materials file
264 2019-04-19 14:30    A family of finite-temperature electronic phase transitions in graphene multilayers file
263 2015-11-06 16:30    Topological Dirac line nodes in centrosymmetric semimetals
262 2018-03-16 16:00    Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
261 2018-03-16 16:00    Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
260 2022-08-09 14:00    Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file
259 2016-05-13 13:30    Aperiodic crystals in low dimensions
258 2018-04-11 16:00    Non-Gaussian states of multimode light generated via hybrid quantum information processing file
257 2025-07-03 14:00  Dr. Young-Gwan Choi (Max Planck Institute )  Quantum sensing with NV centers: nanoscale magnetometry file
256 2017-05-12 13:30    Topological Dirac insulator
255 2022-05-13 16:00    High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
254 2022-06-10 11:00    Record-quality two-dimensional electron systems file
253 2018-04-11 13:30    Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
252 2018-10-15 16:00    Universal properties of macroscopic current-carrying systems file
251 2016-09-02 16:00    Quantum Electrical Transport in Topological Insulator Nanowires
250 2016-09-02 14:30    Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
249 2023-12-14 16:00    Superconducting qubits for large-scale quantum computers file
248 2023-04-13 11:00    [High Energy Theory Seminar]Noninvertible Gauss Law and Axions
247 2025-04-29 10:00  Dr. Yeonju Go (Brookhaven National Laboratory)  Exploring the Hottest Matter in the Universe: Quark-Gluon Plasma through Hard Probes and Artificial Intelligence file
246 2015-12-01 16:00    Introducing extra dimensions to spectroscopic studies of advanced quantum materials