visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-04-19 14:00 
일시 Apr. 19(Tue.), 2PM 
장소 #1323(E6-2. 1st fl.) 
연사 Prof. Mark Koepke, Department of Physics and Astronomy, West Virginia University, USA 

Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability

 

Apr. 19(Tue.), 2PM, #1323(E6-2. 1st fl.)
Prof. Mark Koepke, Department of Physics and Astronomy, West Virginia University, USA

 

The local plasma generation, structure, and stability at one location and time can be unexpectedly influenced by “nonlocal” electron transport and heating effects attributed to conditions, processes, and boundaries many energy-relaxation scale lengths away in another part of the plasma. Nonlocal effects are attributed to electric-field sampling by a traversing electron across disparate regional plasma conditions when the electron energy relaxation length is larger than or comparable to the scale length of plasma inhomogeneity. As a result, the entire electric-field profile, including sheaths, striations, and filamentation, rather than the local electric field strength, determines spatiotemporal electron current and heating, even in collisional plasma. Non-equilibrium, nonlocal properties make partially ionized plasma, which is strongly affected also by the presence of neutral species, a solid surface, particulates, or a liquid, a remarkable tool for manufacturing (of semiconductor chips, solar and plasma-display panels, and plasma sources for particle beams), for the treatment of organic and bio-objects/materials, and for nanotechnology. A promising approach for improved control of the local quantities plasma density, electron temperature, and electron and ion energy distribution functions (EEDF, IEDF) exploits the peculiarities of nonlocal effects on these characteristic plasma parameters. Nonlocal collisional electron transport effects are important for understanding and applying atmospheric-pressure plasma jets, micro-discharges, and low pressure plasma discharges not only to the pursuit of the discovery plasma frontier but also to technology used everyday.

번호 날짜 장소 제목
공지 2022-10-24 16:00  E6 #1501(공동강의실)  Physics Colloquim(Fall 2022)
공지 2022-09-21 10:30  E6-1 #1501  [Update 세미나 영상] Distinguished Lecture 'The Magic of Moiré Quantum Matter' Prof. Pablo Jarillo-Herrero(Department of Physics, MIT)
공지 2022-11-11 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Honeycomb oxide heterostructures for quantum spin liquid
공지 2022-10-28 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Machine-Learning-Guided Prediction models and Materials discovery for high Tc cuprates
공지 2022-10-07 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Competing orders in a vanadium-based kagome metal monolayer
공지 2022-09-23 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Steady Floquet-Andreev states in graphene Josephson junctions
공지 2022-09-22 11:00  E6-1 #1323  2022 가을학기 응집물리 및 광학 세미나 전체 일정
174 2016-10-07 13:30  E6-2. #1323(1st fl.)  “Symmetry and topology in transition metal dichalcogenide?”
173 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
172 2019-04-26 16:00  #1323, E6-2  Robust Quantum Metrology using Strongly Interacting Spin Ensembles and Quantum Convolutional Neural Network file
171 2021-12-03 14:30  Zoom webinar  Topological Spin Textures: Skyrmions and Beyond file
170 2019-11-05 16:00  #1323, E6-2  Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
169 2019-11-20 16:00  #5302, E6-2  Correlation between superconducting transition temperature and critical current density in irradiated iron-based superconductors file
168 2020-02-13 16:30  E6-6, #119  Enhanced Light-Matter Interactions in Graphene with Noble Metal Plasmonic Structures file
167 2022-06-10 14:30  E6-2. 1st fl. #1323  Combinatorial strategy for condensed matter physics: study on rare earth hexaborides thin films file
166 2019-10-31 10:00  #1323 (E6-2, 1st fl.)  Kondo meets Hubbard: Impurity physics for correlated lattices file
165 2018-04-09 11:00  E6-2. 1st fl. #1323  Doublon-holon origin of the subpeaks at the Hubbard band edges file
164 2019-10-29 16:00  #1323 (E6-2, 1st fl.)  Particles and Gravity via String Geometry file
163 2018-06-01 11:00  E6-2. 1st fl. #1323  Topological phases in low-dimensional quantum materials file
162 2019-03-29 14:30  E6-2. 1st fl. #1323  Epitaxial Multifunctional Oxide Thin Films for Novel Electronics file
161 2016-01-26 14:00  E6-2, #1323  Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
160 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
159 2019-06-17 10:30  #1323, E6-2  Chiral Spintronics file
158 2015-07-15 14:00  E6-2,1323  Electronic and optical properties of titanate-based oxide superlattices
157 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
156 2017-03-24 16:00  #1323 (1st fl. E6-2)  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
155 2022-06-10 16:00  E6-2. 1st fl. #1323  Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file