visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Non-reciprocal phase transitions

2022.03.28 11:35

admin 조회 수:386

날짜 2022-03-29 10:00 
일시 10AM, 29th Mar. / 13:30 PM, 30th Mar. 
장소 E6 #1501/zoom, E6 #2502/zoom 
연사 Dr. RYO HANAI (APCTP) 
Title: Non-reciprocal phase transitions
presenter Dr. RYO HANAI (APCTP) 
Date: 10AM, 29th Mar. E6 #1501/zoom
        13:30 PM, 30th Mar. E6 #2502/zoom  
 

https://us02web.zoom.us/j/87623324709?pwd=TElFeTZZT2xCZnZ1azV5OEg4N1BjUT09

회의 ID: 876 2332 4709

암호: 125958

 
abstract

Phase transitions are ubiquitous in nature. For equilibrium cases, the celebrated Landau theory has provided great success in describing these phenomena on general grounds. Even for nonequilibrium transitions such as optical bistability, flocking transition, and directed percolation, one can often define Landau’s free energy in a phenomenological way to successfully describe the transition at a meanfield level. In such cases, the nonequilibrium effect is present only through the noise-activated spatial-temporal fluctuations that break the fluctuation-dissipation theorem. Here, by generalizing the Ginzburg-Landau theory to be applicable to driven systems, we introduce a novel class of nonequilibrium phase transitions [1-2] and critical phenomena [3] that does not fall into this class. Remarkably, the discovered phase transition is controlled by spectral singularity called the exceptional points that can only occur by breaking the detailed balance and therefore has no equilibrium counterparts. The emergent collective phenomena range from active time (quasi)crystals to exceptional point enforced pattern formation, hysteresis, to anomalous critical phenomena that exhibit anomalously large phase fluctuations (that diverge at d≤4) and enhanced many-body effects (that become relevant at d<8) [3]. The inherent ingredient to these is the non-reciprocal coupling between the collective modes that arise due to the drive and dissipation.

[1]  M. Fruchart*, R. Hanai*, P. B. Littlewood, and V. Vitelli, Non-reciprocal phase transitions. Nature 592, 363 (2021).

[2]  R. Hanai, A. Edelman, Y. Ohashi, and P. B. Littlewood, Non-Hermitian phase transition from a polariton Bose-Einstein condensate to a photon laser. Phys. Rev. Lett. 122, 185301 (2019).

[3]  R. Hanai and P. B. Littlewood, Critical fluctuations at a many-body exceptional point. Phys. Rev. Res. 2, 033018 (2020).
 
번호 날짜 장소 제목
공지 2022-10-24 16:00  E6 #1501(공동강의실)  Physics Colloquim(Fall 2022)
공지 2022-09-21 10:30  E6-1 #1501  [Update 세미나 영상] Distinguished Lecture 'The Magic of Moiré Quantum Matter' Prof. Pablo Jarillo-Herrero(Department of Physics, MIT)
공지 2022-11-11 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Honeycomb oxide heterostructures for quantum spin liquid
공지 2022-10-28 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Machine-Learning-Guided Prediction models and Materials discovery for high Tc cuprates
공지 2022-10-07 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Competing orders in a vanadium-based kagome metal monolayer
공지 2022-09-23 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Steady Floquet-Andreev states in graphene Josephson junctions
공지 2022-09-22 11:00  E6-1 #1323  2022 가을학기 응집물리 및 광학 세미나 전체 일정
173 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
172 2019-04-26 16:00  #1323, E6-2  Robust Quantum Metrology using Strongly Interacting Spin Ensembles and Quantum Convolutional Neural Network file
171 2021-12-03 14:30  Zoom webinar  Topological Spin Textures: Skyrmions and Beyond file
170 2019-11-05 16:00  #1323, E6-2  Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
169 2019-11-20 16:00  #5302, E6-2  Correlation between superconducting transition temperature and critical current density in irradiated iron-based superconductors file
168 2020-02-13 16:30  E6-6, #119  Enhanced Light-Matter Interactions in Graphene with Noble Metal Plasmonic Structures file
167 2022-06-10 14:30  E6-2. 1st fl. #1323  Combinatorial strategy for condensed matter physics: study on rare earth hexaborides thin films file
166 2019-10-31 10:00  #1323 (E6-2, 1st fl.)  Kondo meets Hubbard: Impurity physics for correlated lattices file
165 2018-04-09 11:00  E6-2. 1st fl. #1323  Doublon-holon origin of the subpeaks at the Hubbard band edges file
164 2019-10-29 16:00  #1323 (E6-2, 1st fl.)  Particles and Gravity via String Geometry file
163 2018-06-01 11:00  E6-2. 1st fl. #1323  Topological phases in low-dimensional quantum materials file
162 2019-03-29 14:30  E6-2. 1st fl. #1323  Epitaxial Multifunctional Oxide Thin Films for Novel Electronics file
161 2016-01-26 14:00  E6-2, #1323  Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
160 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
159 2019-06-17 10:30  #1323, E6-2  Chiral Spintronics file
158 2015-07-15 14:00  E6-2,1323  Electronic and optical properties of titanate-based oxide superlattices
157 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
156 2017-03-24 16:00  #1323 (1st fl. E6-2)  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
155 2022-06-10 16:00  E6-2. 1st fl. #1323  Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file
154 2015-12-03 16:00  E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors