visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-04-28 16:00 
연사  
장소 #1323 (E6-2. 1st fl.) 

Carbon nanotubes coupled to superconducting impedance matching circuits

 

Dr. Minkyung Jung

Research Institute, DGIST

 

Apr. 28 (Fri.), 04:00 PM

#1323 (E6-2. 1st fl.)

 

 

Abstract: 

 Coupling carbon nanotube devices to microwave circuits offers a significant increase in bandwidth and signal-to-noise ratio. These facilitate fast non-invasive readouts important for quantum optics, shot noise and correlation measurements. Here, we successfully couple a carbon nanotube (CNT) double quantum dot to a GHz superconducting matching circuit using a mechanical transfer technique. The device shows a tunable bipolar double dot behavior, reaching the few-electron/hole regime. The resonance response reflected by the matching circuit is a sensitive probe of the charge state of the device, allowing a determination of the absolute charge number. The resonance response at the interdot charge transitions enables quantitative parameter extraction. Presented results open the path for novel studies of microwave photons interacting with electrons in carbon nanotubes.

 

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

 

 

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
365 2025-04-29 16:00  Dr. Tokuro Shimokawa (Okinawa Institute of Science and Technology)  Can experimentally-accessible measures of entanglement distinguish quantum spin liquid and random singlet phases? file
364 2018-10-16 10:00    Capturing protein cluster dynamics and gene expression output in live cells file
363 2023-02-28 11:00    Topotactic redox engineering toward novel material file
362 2022-11-10 16:00    Probing the Origin of Cosmic Infrared Background and Future Prospects with SPHEREx
361 2015-11-10 16:00    Rapid heating of matter using high power lasers
360 2015-12-01 16:00    Introducing extra dimensions to spectroscopic studies of advanced quantum materials
359 2025-04-29 10:00  Dr. Yeonju Go (Brookhaven National Laboratory)  Exploring the Hottest Matter in the Universe: Quark-Gluon Plasma through Hard Probes and Artificial Intelligence file
358 2023-04-13 11:00    [High Energy Theory Seminar]Noninvertible Gauss Law and Axions
357 2023-12-14 16:00    Superconducting qubits for large-scale quantum computers file
356 2016-09-02 14:30    Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
355 2016-09-02 16:00    Quantum Electrical Transport in Topological Insulator Nanowires
354 2018-10-15 16:00    Universal properties of macroscopic current-carrying systems file
353 2018-04-11 13:30    Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
352 2022-06-10 11:00    Record-quality two-dimensional electron systems file
351 2022-05-13 16:00    High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
350 2017-05-12 13:30    Topological Dirac insulator
349 2025-07-03 14:00  Dr. Young-Gwan Choi (Max Planck Institute )  Quantum sensing with NV centers: nanoscale magnetometry file
348 2018-04-11 16:00    Non-Gaussian states of multimode light generated via hybrid quantum information processing file
347 2016-05-13 13:30    Aperiodic crystals in low dimensions
346 2022-08-09 14:00    Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file