visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-01-12 11:00 
일시 Jan 12th (Wed), 11:00 AM 
장소 Zoom and E6 #1323 
연사 Joonseok Hur (MIT) 

 

Title: Spectroscopic study of trapped ions towards probing dark matter and new physics

 

Speaker: Joonseok Hur (MIT)

 

January 12th (Wednesday), 11:00, E6 #1323 &

Zoom link: https://kaist.zoom.us/j/86232436126

 

 

Historically, precise atomic spectroscopy has led to new physics in many instances. Precision low-energy experiments may thus supplement high-energy and astrophysical approaches. It has been proposed to measure the isotope shifts (ISs) in ions to probe new physics using King plots [1], a two-dimensional graph that maps the measured ISs [2]. The Standard Model (SM) predicts in the leading order that the points in King plots should lie on a straight line. Departure from such linearity is unambiguously observed in our recent experiments with narrow optical transitions in trapped ions [3]. However, the contribution of higher-order corrections to the non-linearity within the SM complicates the test. The sources of the observed violation should be examined carefully to decouple the SM corrections arising from nuclear physics from possible new-physics contributions.

Here I will present our latest experimental and theoretical efforts to observe the non-linearity, identify its physical origin, and obtain the bound on dark boson-mediated interaction as a particular type of new physics that is of increasing interest. Future works will be discussed subsequently.

 

[1] J. C. Berengut et al., Physical Review Letters 120, 091801 (2018); V. V. Flambaum, A. J. Geddes, and A. V. Viatkina, Physical Review A 97, 032510 (2018); C. Delaunay et al., Physical Review D 96, 093001 (2017).

[2] W. H. King, Isotope Shifts in Atomic Spectra (Plenum Press, New York, 1984).

[3] I. Counts*, J. Hur* et al., Physical Review Letters 125, 123002 (2020) for the early stage of the work.

 

 

 

Contact: Myeongsoo Kang (mskang@kaist.ac.kr)

번호 날짜 장소 제목
307 2018-10-16 10:00  #1323, E6-2  Capturing protein cluster dynamics and gene expression output in live cells file
306 2023-02-28 11:00  E6 Room(#1322)  Topotactic redox engineering toward novel material file
305 2022-11-10 16:00  E6-2. 1st fl. #1323  Probing the Origin of Cosmic Infrared Background and Future Prospects with SPHEREx
304 2015-11-10 16:00  E6-2, #1323  Rapid heating of matter using high power lasers
303 2015-12-01 16:00  E6-2, #1323  Introducing extra dimensions to spectroscopic studies of advanced quantum materials
302 2023-04-13 11:00  Zoom  [High Energy Theory Seminar]Noninvertible Gauss Law and Axions
301 2023-12-14 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Superconducting qubits for large-scale quantum computers file
300 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
299 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
298 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file
297 2018-04-11 13:30  #1323 (E6-2, 1st fl.)  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
296 2022-06-10 11:00  Online seminar  Record-quality two-dimensional electron systems file
295 2022-05-13 16:00  자연과학동(E6-2) 1st fl. #1323  High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
294 2017-05-12 13:30  E6-2. 1st fl. #1323  Topological Dirac insulator
293 2018-04-11 16:00  #1323 (E6-2, 1st fl.)  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
292 2016-05-13 13:30  E6. #1501(1st fl.)  Aperiodic crystals in low dimensions
291 2022-08-09 14:00  KI building (E4), Lecture Room Red (B501)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file
290 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
289 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
288 2015-11-06 16:30  E6-2, #5318  Topological Dirac line nodes in centrosymmetric semimetals