visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-03-18 11:00 
연사  
장소 Online seminar 
1. Date / Time 
  - March 18, 2022 
  - 11:00 AM (KST)
 
2. ZOOM (Only online)
 
3. Speaker
    - Dr. Dirk Wulferding (IBS-Center for Correlated Electron Systems, Seoul National University, Seoul)
 
4. Talk Title
    - Illuminating exotic states of matter: Raman spectroscopy as an experimental tool to characterize quantum spin liquids 
 
5. Abstract
   -  Quantum spin liquids are paradigmatic examples of long-range entangled quantum states that host fractionalized excitations and may realize non-abelian anyonic quantum statistics. These states can emerge in systems with magnetic correlations that are restricted in dimensionality and in coordination, and that are characterized by a small quantum spin number [1]. While this concept is strikingly simple, so far only a few materials exist that are considered as good candidates for quantum spin liquid ground states. A major challenge is that these states evade any classical long-range order, thereby lacking any clear experimental fingerprints. Adding to this challenge is that oftentimes only microscopically small samples can be synthesized, thus limiting possible experimental characterization probes. 
    Raman spectroscopy is a method sensitive to magnetic excitations in both triplet and singlet sector, and therefore sensitive to fractionalized spinon and Majorana fermionic excitations that emerge from quantum spin liquid ground states [2]. In my talk, I will review how we characterize the ground states of various Heisenberg antiferromagnets on the kagome lattice, and of Kitaev spin liquids using Raman spectroscopy at high magnetic fields. Our data suggest that in vicinity to quantum criticality Kitaev magnets may host non-abelian Majorana bound states [3]. 
[1] see, e.g., Savary, et al., Rep. Prog. Phys. 80, 016502 (2017). 
[2] Wulferding, et al., JPCM 32, 043001 (2020). 
[3] Wulferding, et al., Nat. Commun. 11, 1603 (2020)
 
0221_카이스트 물리학과(응집물리)포스터-최종.jpg

 

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
605 2019-09-18 16:00    Fall 2019: Physics Seminar Serises file
604 2019-09-02 16:00    Fall 2019: Physics Colloquium file
603 2024-01-26 15:00    In-situ 4D-STEM studies on surface reconstruction and polarization switching of perovskite oxides
602 2020-09-24 09:00    (CAPP/IBS)Searching for Dark Matter with a Superconducting Qubit , Cryogenic Microwave Circuit Development at the NSTU file
601 2021-01-28 18:00    Quantum metamaterials: concept, theory, prototypes and possible applications file
600 2023-09-18 11:00    Magic polarisation trapping of polar molecules for tunable dipolar interactions file
599 2015-12-09 11:00    Functional Imaging & Monitoring of Brain & Breast with Diffuse Light
598 2015-12-09 14:00    SWELLABLE COLLOIDAL PARTICLES ARE SWELL
597 2020-09-28 17:30    KAIST Global Forum for Spin and Beyond(Fourth Forum) file
596 2024-03-28 11:00    Geometric characterization of thermoelectric performance of two-dimensional quadratic band-crossing semimetals
595 2023-01-12 16:00    Spin wavepackets in the Kagome ferromagnet Fe3Sn2: propagation and precursors
594 2021-04-19 19:00    Evidence of Electrical Switching in Antiferromagnets and Coherent Spin Pumping file
593 2017-12-14 15:00    Exploring the Universe via GWs in the era of multi-messenger astronomy
592 2019-10-25 15:00    Physics Seminar file
591 2024-11-21 11:00  Daniel L. Jafferis  3d Gravity and Tensor Model file
590 2023-10-04 16:00    [High-Energy Theory Seminar] Moving towards quantum technologies: the case of quantum batteries
589 2024-06-05 10:00    Moir\’e fractals in supermoir\’e structures
588 2016-12-12 13:30    “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
587 2025-06-05 10:00  Dr . On Kim (University of Mississippi)  The Final Result from the Muon g-2 Experiment at Fermilab: The World’s Most Precise Measurement of the Muon Magnetic Anomaly file
586 2016-04-06 15:30    Superconducting Quantum Interference Devices for Precision Detection