visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-05-19 15:00 
연사  
장소 May 19, 2016 (Thur.) 3PM, 

 

The CERN Resonant WISP Search: Development, Results and Lesson-Learned

   

May 19, 2016 (Thur.) 3PM, #5318(E6-2, 5th fl.)

Dr. Michael Betz, CERN

   

Weakly Interacting Sub-eV Particles (WISPs) could reveal the composition of cold dark matter in the universe and explain a large number of astrophysical phenomena. Despite their strong theoretical motivation, these hypothetical particles could not be observed in any experiment so far.

The "CERN Resonant WISP Search"(CROWS) probes the existence of WISPs using microwave techniques.

The heart of the table-top experiment are two high-Q microwave cavity resonators. The `emitting cavity` is driven by a power amplifier at 3 GHz, resulting in the build-up of a strong electromagnetic field inside. The `receiving cavity` is placed in close vicinity and connected to a sensitive microwave receiver.

Most theories predict a weak coupling between the two cavities due to a Photon to WISP conversion process. CROWS tries to observe that coupling, while mitigating electromagnetic crosstalk with a high-end (~ 300 dB) electromagnetic shielding enclosure for the receiving part of the experiment.

Although no WISPs were detected in the most sensitive measurement-runs in 2013, a previously unexplored region in the parameter space was opened up. For `Hidden Sector Photons`, a prominent member of the WISP family, the result corresponds to an improvement in sensitivity over the previous laboratory exclusion limit by a factor of ~7.

This talk shall give a brief introduction to WISPs, the experimental search efforts worldwide and then focus on the design and development of the CROWS experiment, which happened in the framework of the authors PhD.

The encountered engineering challenges and their solutions will be highlighted. This includes the high performance EMI shielding ( 300 dB through several layers), operating electronics in strong (3 T) magnetic fields, optical signal transmission and high sensitivity (P < 1E-24 W) microwave signal detection. The operation procedure and the lessons learned during various experimental runs are shown. Furthermore, several ideas are proposed, on how to improve the experiment and its sensitivity further.

 

Contact: T.8166(CAPP Administration Office)

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
206 2019-04-19 16:00    Graphene and hBN heterostructures file
205 2019-06-17 10:30    Chiral Spintronics file
204 2015-07-15 14:00    Electronic and optical properties of titanate-based oxide superlattices
203 2016-09-29 16:00    Large-scale Silicon Photonic MEMS Switches
202 2017-03-24 16:00    Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
201 2022-06-10 16:00    Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file
200 2025-01-08 16:00  Dr. SangEun Han  Quantum impurity model for two-stage multipolar ordering and Fermi surface reconstruction
199 2015-12-03 16:00    Hybrid solid state spin qubits in wide bandgap semiconductors
198 2017-06-02 16:00    Maxwell's demon in quantum wonderland file
197 2022-11-09 16:00    Radio Astronomy, Radio Interferometry, and Multi-wavelength Studies on Relativistic Jets
196 2023-05-03 16:00    Probing microscopic origins of axions by the chiral magnetic effect
195 2020-10-15 17:00    Time crystals, quasicrystals, and time crystal dynamics in the superfluid universe file
194 2022-03-31 10:00    Weiss fields for Quantum Spin Dynamics file
193 2022-03-29 10:00    Non-reciprocal phase transitions file
192 2024-05-16 14:30    [Astrophysics Seminar] Observational Cosmology with Superconducting Sensors
191 2024-05-30 10:00    Quasiperiodic Effects in Quasicrystals
190 2018-11-09 14:30    Moiré superlattices – from twisted bilayer graphene to quasicrystal file
189 2015-10-16 15:00    High Magnetic Fields to Probe the sub-eV range of Particle/Astroparticle Physics - From the OSQAR experiments at CERN up to new perspectives at LNCMI-Grenoble
188 2018-07-02 15:00    High Precision Magnetic Field Measurement for the Muon g-2 Experiment file
187 2016-06-01 10:30    Welcome to Nature Photonics