visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-09-02 14:30 
일시 Sep. 02(Fri) 2:30 PM 
장소 E6-2(1st fl.), #1323 
연사 Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST 

Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction

 

Sep. 02(Fri) 2:30 PM, E6-2(1st fl.), #1323
Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST

 

Abstract:
Heat, a measure of entropy, is largely perceived to be diffusive and transported incoherently by charge carriers (electrons and holes) and lattice vibrations (phonons) in a material. Because heat can be carried by many different (quasi-)particles, it is generally hard to spatially localize the transport of the thermal energy. Heat transport is thus considered to be a challenging means of the local probing of a material and of its electronic states. Recently, we have shown that coherent electron and heat transport through a point-like contact in the atomic force microscope set-up at the ultra-high vacuum condition produces an atomic Seebeck effect, which represents the novel imaging principle of surface wave functions with atomic resolution. The heat-based scanning Seebeck microscopy clearly contrasts to the vacuum tunneling-based scanning tunneling microscopy, a hitherto golden standard of imaging surface wave functions. We have found that the coherent transmission probabilities of electron and phonon across the tip-sample junction are equally important for the imaging capability of the scanning Seebeck microscope. Very recently, we have reported that abnormally enhanced nanoscale friction on ice-trapped graphene surface could be understood in terms of flexural phonon couplings between graphene and substrate (e.g. mica). Also, we have found that energetic tunneling electrons in scanning tunneling microscopy can cause chemical reactions at the single molecule level by locally exciting phonon modes of molecules (or nanoscale heating) under the tip through the inelastic electron-phonon scattering. In this talk, I will discuss how we theoretically explore nanoscale thermal physics including thermoelectric imaging, nanoscale friction, and single molecule chemical reaction, specifically in the setup of scanning probe microscopy.


Contact: Sung Jae Cho, Physics Dept., (sungjae.cho@kaist.ac.kr)

번호 날짜 장소 제목
247 2017-05-12 13:30  E6-2. 1st fl. #1323  Topological Dirac insulator
246 2022-05-13 16:00  자연과학동(E6-2) 1st fl. #1323  High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
245 2022-06-10 11:00  Online seminar  Record-quality two-dimensional electron systems file
244 2018-04-11 13:30  #1323 (E6-2, 1st fl.)  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
243 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file
242 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
» 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
240 2023-12-14 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Superconducting qubits for large-scale quantum computers file
239 2023-04-13 11:00  Zoom  [High Energy Theory Seminar]Noninvertible Gauss Law and Axions
238 2015-12-01 16:00  E6-2, #1323  Introducing extra dimensions to spectroscopic studies of advanced quantum materials
237 2015-11-10 16:00  E6-2, #1323  Rapid heating of matter using high power lasers
236 2022-11-10 16:00  E6-2. 1st fl. #1323  Probing the Origin of Cosmic Infrared Background and Future Prospects with SPHEREx
235 2023-02-28 11:00  E6 Room(#1322)  Topotactic redox engineering toward novel material file
234 2018-10-16 10:00  #1323, E6-2  Capturing protein cluster dynamics and gene expression output in live cells file
233 2018-06-18 10:00  E6-2. 2nd fl. #2502  Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms file
232 2019-03-29 16:00  E6-2. 1st fl. #1323  Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM file
231 2023-09-26 16:00  E6-2, #2502  [High Energy Theory Seminar]A new step in interacting dark sector cosmologies
230 2016-03-11 16:00  E6-2. 1st fl. #1501  Jan. Switching handedness of of chiral solitons in Z4 topological insulators
229 2021-04-02 14:30  Online(Zoom)  Quantum computing and entanglement generation using trapped ions and photons
228 2021-05-14 14:30  Online seminar  Electrically tunable spin valve effect in vertical van-der-Waals magnetic tunnel junctions file