visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-09-02 14:30 
연사  
장소 E6-2(1st fl.), #1323 

Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction

 

Sep. 02(Fri) 2:30 PM, E6-2(1st fl.), #1323
Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST

 

Abstract:
Heat, a measure of entropy, is largely perceived to be diffusive and transported incoherently by charge carriers (electrons and holes) and lattice vibrations (phonons) in a material. Because heat can be carried by many different (quasi-)particles, it is generally hard to spatially localize the transport of the thermal energy. Heat transport is thus considered to be a challenging means of the local probing of a material and of its electronic states. Recently, we have shown that coherent electron and heat transport through a point-like contact in the atomic force microscope set-up at the ultra-high vacuum condition produces an atomic Seebeck effect, which represents the novel imaging principle of surface wave functions with atomic resolution. The heat-based scanning Seebeck microscopy clearly contrasts to the vacuum tunneling-based scanning tunneling microscopy, a hitherto golden standard of imaging surface wave functions. We have found that the coherent transmission probabilities of electron and phonon across the tip-sample junction are equally important for the imaging capability of the scanning Seebeck microscope. Very recently, we have reported that abnormally enhanced nanoscale friction on ice-trapped graphene surface could be understood in terms of flexural phonon couplings between graphene and substrate (e.g. mica). Also, we have found that energetic tunneling electrons in scanning tunneling microscopy can cause chemical reactions at the single molecule level by locally exciting phonon modes of molecules (or nanoscale heating) under the tip through the inelastic electron-phonon scattering. In this talk, I will discuss how we theoretically explore nanoscale thermal physics including thermoelectric imaging, nanoscale friction, and single molecule chemical reaction, specifically in the setup of scanning probe microscopy.


Contact: Sung Jae Cho, Physics Dept., (sungjae.cho@kaist.ac.kr)

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
285 2024-09-26 14:00    Quantum spin nematic phase in a square-lattice iridate
284 2019-08-27 16:00    Critical current properties of Fe-based superconductors file
283 2020-01-17 16:00    Symmetry Breaking and Topology in Superfluid 3He file
282 2024-08-16 11:00    Cathodoluminescence for nanophotonics: Applications to plasmonic bandgap materials and perovskite semiconductors file
281 2023-11-30 10:30    [High-Energy Theory Seminar] 3d-3d correspondence and 2d N = (0,2) boundary conditions
280 2019-09-26 16:00    Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
279 2019-12-27 15:00    The superconducting order parameter puzzle of Sr2RuO4 file
278 2019-12-27 15:00    The superconducting order parameter puzzle of Sr2RuO4 file
277 2024-10-14 11:00    [RSVP, Oct 14th Mon] Ambassador of Hungary to Republic of Korea Special Lecture file
276 2024-10-21 13:00    [Physics Seminar] “Non-Hermitian Point-Gap Topology in Junction Systems” file
275 2024-01-16 16:00    [High Energy Theory Seminar] Towards quantum black hole microstates
274 2022-05-12 16:00    New frontiers of electroweak physics at the LHC
273 2022-05-19 16:00    Chasing Long Standing Neutrino Anomalies with MicroBooNE
272 2022-05-18 16:00    Geometry, Algebra, and Quantum Field Theory
271 2022-09-15 13:00    AdS black holes: a review
270 2016-11-18 10:30    Non-equilibrium many-body spin dynamics in diamond
269 2016-10-27 16:00    Terahertz Metal Optics
268 2019-06-28 13:30    Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
267 2016-04-08 13:30    Theoretical Overview of Iron-based superconductors and its future
266 2017-09-26 11:00    Time-resolved ARPES study of Dirac and topological materials