visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-08-04 11:00 
일시 2015/08/04, 11PM 
장소 B501, Room Red, KI bldg. 5nd fl. 
연사 Dr. Eric Jin Ser Lee(Univ. of Manitoba, Canada) 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada

 

 

During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 

 

The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 

 

The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.

 

Contact: Prof. YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr)

 

 

번호 날짜 장소 제목
245 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
244 2019-06-28 13:30  #1323, E6-2  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
243 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
242 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials
241 2019-11-01 14:30  E6-2. 1st fl. #1323  Squeezing the best out of 2D materials file
240 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file
239 2015-11-06 16:30  E6-2, #5318  Topological Dirac line nodes in centrosymmetric semimetals
238 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
237 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
236 2022-08-09 14:00  KI building (E4), Lecture Room Red (B501)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file
235 2016-05-13 13:30  E6. #1501(1st fl.)  Aperiodic crystals in low dimensions
234 2018-04-11 16:00  #1323 (E6-2, 1st fl.)  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
233 2017-05-12 13:30  E6-2. 1st fl. #1323  Topological Dirac insulator
232 2022-05-13 16:00  자연과학동(E6-2) 1st fl. #1323  High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
231 2022-06-10 11:00  Online seminar  Record-quality two-dimensional electron systems file
230 2018-04-11 13:30  #1323 (E6-2, 1st fl.)  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
229 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file
228 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
227 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
226 2023-12-14 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Superconducting qubits for large-scale quantum computers file