visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2021-06-11 14:30 
연사  
장소 Online seminar 

 

SRC Seminar

 

 

Engineering sound waves and vibrations in multi-mode nanomechanical systems

 

Dr. Jin Woong Cha

Quantum Technology Institute, KRISS

 

Jun. 11 (Fri.), 02:30 PM

Online seminar

https://kaist.zoom.us/j/89283252628
회의 ID: 892 8325 2628

암호: 916514

 

 

 

 

Abstract:

Nanoscale mechanical systems provide versatile physical interfaces with their ability to interact with various physical states, for example, electromagnetic fields (e.g., microwaves and optical light) and quantum states (e.g., spins and electrons). Therefore, engineering nanoscale sound waves and vibrations in nanomechanical systems is essential for a wide range of applications in sensing and information processing both in the classical and quantum regimes. My talk will focus on two different nanomechanical platforms I have recently worked on. In the first part of my talk, I will discuss a unique nanomechanical platform called nanomechanical lattices which enable electrically tunable phonon propagation dynamics [1] and topologically protected phonon transport [2] at MHz frequencies. This platform consists of arrays of mechanically coupled, free-standing silicon-nitride nanomechanical membranes that support propagating flexural elastic waves. For the second part of my talk, I will describe our recent studies on the cavity electromechanics in a superconducting nanoelectromechanical resonator implementing superconducting niobium [3]. This system demonstrates various optomechanical phenomena arising from the interaction of nanomechanical motions and microwave fields (e.g., phonon cooling and amplification, optomechanically induced reflection) and can be used in various applications such as quantum transducers. I will then conclude my talk by briefly describing our ongoing work at KRISS.

 

Reference:

[1] J. Cha, et al. Nature Nanotechnology 13, 1016-1020 (2018)

[2] J. Cha, et al. Nature 564, 229-233 (2018)

[3] J. Cha, et al. Nano Letters 21, 1800-1806 (2021)

 

 

Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

 

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
605 2010-02-14 16:00    Physics Colloquium - 2011 Spring file
604 2023-04-14 12:00    (응집물리 세미나)Exotic quantum phenomena in two-dimensional materials file
603 2023-05-12 11:00    (응집물리 세미나)Interlayer conductivity and plasmon in weakly coupled layered systems
602 2022-05-26 16:00    (광학분야 특별세미나)Topological photonic devices
601 2023-06-01 16:00    (광학분야 세미나)Quantum sensing using a squeezed light from hot Rb vapor
600 2015-03-09 16:00    Physics Colloquium : 2015 Spring file
599 2022-03-31 16:00    (광학분야 특별세미나)Ultrafast time-resolved spectroscopy in topological materials
598 2023-03-30 16:00    (광학분야 세미나)Scalable quantum entanglement in trapped-ions based quantum computer
597 2022-08-17 11:00    Robust Hamiltonian Engineering of Large Quantum Systems (큰 양자시스템의 견고한 해밀토니안 엔지니어링)
596 2010-02-08 16:00    Physics Ciolloquium : 2010 Spring file
595 2009-10-21 16:00    Interdimensional Universality of Dynamic Interfaces
594 2025-05-23 11:00  천상모 교수(한양대학교)  Superconductivity in Topological Materials file
593 2025-04-28 16:00  지명국 (연세대 천문우주학과)  Galaxy Cluster Collisions as Cosmic Laboratories for Dark Matter file
592 2010-09-06 16:00    Physics Colloquium : 2010 Fall file
591 2025-04-11 11:00  조상연 박사(Wellman Center for Photomedicine)  Semiconductor Nanolaser Particles: The Building Blocks of Next-Generation, Highly Multiplexed Photonic Systems file
590 2017-03-21 16:00    Spring 2017: Physics Seminar Serises file
589 2025-04-04 12:00  조길영 교수(KAIST)  Theoretical Kaleidoscope of Quantum Material Research: From Quantum Field Theory and Quantum Information to Future Devices file
588 2022-05-16 16:00    Design synthetic topological matter with atoms and lights
587 2020-10-15 16:00    Towards resource-efficient and fault-tolerant quantum computation with nonclassical light
586 2022-04-25 16:00    Ultrafast electron beam, a tool to explore the nanoscopic world of materials(우리말강의)