Time-resolved ARPES study of Dirac and topological materials
2017.09.20 13:12
장소 | #1323 (E6-2. 1st fl.) |
---|---|
일시 | Sep. 26 (Tue.), 11AM |
연사 | Dr. Yukiaki Ishida / ISSP, University of Tokyo |
Time-resolved ARPES study of Dirac and topological materials
Dr. Yukiaki Ishida / ISSP, University of Tokyo
Sep. 26 (Tue.), 11AM
#1323 (E6-2. 1st fl.)
Time- and angle-resolved photoemission spectroscopy (TARPES) has become a powerful tool to investigate the non-equilibrated states and dynamics of matter from an electronic structural point of view. Being a surface sensitive method, TARPES has also opened pathways to explore the ultrafast phenomena occurring on the edge of matter. We present investigations done on Dirac and topological materials by using a TARPES apparatus that achieves the energy resolution of 10.5 meV and high stability [1].
1. Classification of the topological phase of matter:
In 2008, it was demonstrated that there are two classes in non-magnetic insulators. A topological twist can be defined for the bulk band structure, and those that have the twist belong to the topologically-nontrivial class. The effect of the twist appears on the edge: On surface of topological insulators (TIs), novel Dirac-type dispersion is formed. Thus, the classification can be done by investigating whether the surface Dirac dispersion exists or not.
2. Functioning surface of topological insulators by light:
We discovered that surface photo-voltage (SPV) can emerge on TIs when the bulk is sufficiently insulating [5]. That is, TIs now meet the well-known opto-electronic function of semiconductors. We discuss that the SPV effect can be utilized to generate spin-polarized current on TI surface, and present the ongoing research towards this end.
3. Ultrafast dynamics of Dirac electrons:
Massless Dirac fermions have the ability to absorb light of whatever color. Thus, Dirac fermions are prospective in opto-electronics. In fact, ultrashort pulses of any color can be created by using TIs and graphitic materials. Broad-band lasing may also be realized if a population inversion can be formed across the Dirac point. Firm understanding of the Dirac electron dynamics thus becomes of paramount importance. We show that an inverted population is realized in the surface Dirac band of a TI Sb2Te3 [6]. Dynamics being either within or beyond a simple two-temperature model scheme is observed in layered Dirac semimetals such as graphite and SrMnBi2 [7].
[1] Y. Ishida et al., Rev. Sci. Instrum. 85, 123904 (2014); Y. Ishida et al., Sci. Rep. 6, 18747 (2016).
[3] P. Zhang et al., Phys. Rev. Lett. 118, 046802 (2017).
[3] S. Kim et al., Phys. Rev. Lett. 112, 136802 (2014).
[4] I. Belopolski et al., Nature Commun. 7, 13643 (2016).
[5] Y. Ishida et al., Sci. Rep. 5, 8160 (2015); M. Neupane et al., Phys. Rev. Lett. 115, 116801 (2015).
[6] S. Zhu et al., Sci. Rep. 5, 13213 (2015).
[7] Y. Ishida et al., Sci. Rep. 1, 64 (2011); Y. Ishida et al., Phys. Rev. B 93, 100302(R) (2016).
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
공지 | 2019/09/18 - 12/5 | Seminar Room #1323 | Prof. David Schuster and etc. | Fall 2019: Physics Seminar Serises |
공지 | 2019/09/02 - 12/09 | Seminar Room 1501 | 이호성 박사 (한국표준과학연구원) and etc. | Fall 2019: Physics Colloquium |
143 | Nov. 3 (Fri.), 2:30 PM | #1323 (1st fl., E6-2.) | Dr. MinChul Lee(Department of Applied Physics, Kyung Hee Univ.) |
Quantum Resistor-Capacitor Circuit with Majorana Edge States
![]() |
142 | Oct. 10(Tue) 4PM | E6-2 #1323 | 김성웅 교수 (성균관대학교 에너지과학과) | Discovery of New 2D Materials with Diverse Physical Properties |
141 | Sep. 22 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. GilHo Lee / Department of Physics, POSTECH |
Unexpected Electron-Pairing in Integer Quantum Hall Effect
![]() |
140 | Sep. 22 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. GilHo Lee / Department of Physics, POSTECH |
Quantum Electronic Transport in Graphene Hybrid Nanostructures
![]() |
139 | Sep. 22 (Fri.), 01:00 PM | E6-2. 1st fl. #1323 | Dr. EunSeong Kim / Department of Physics, KAIST |
Superconductor-metal-insulator transition in thin Tantalum films
![]() |
» | Sep. 26 (Tue.), 11AM | #1323 (E6-2. 1st fl.) | Dr. Yukiaki Ishida / ISSP, University of Tokyo | Time-resolved ARPES study of Dirac and topological materials |
137 | Sep. 13 (Wed.), 4 PM | #1323 (E6-2. 1st fl.) | Prof. Yi. Zhou (The Zhejiang Univ.) |
An Introduction to Quantum Spin Liquids
![]() |
136 | Sep. 12 (Tue.), 4 PM | #1323 (E6-2. 1st fl.) | Prof. Yi. Zhou (The Zhejiang Univ.) |
Exact Solution for the Interacting Kitaev Chain at Symmetric Point
![]() |
135 | AUG. 31 (Thu.), 2 PM | #5318(E6-2. 5th fl.) | Prof. Hiroaki Ishizuka (The University of Tokyo) |
“Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals”
![]() |
134 | Aug. 16 (Wed.), 4 PM | #1322 (E6-2. 1st fl.) | Prof. Noejung Park (UNIST) |
Phonon-driven spin-Floquet valleytro-magnetism
![]() |
133 | July. 14 (Fri.), 3:00 PM | #1323 (E6-2. 1st fl.) | Dr. Jun Hyun Lee / University of Maryland |
Chiral anomaly in disordered Weyl semimetals
![]() |
132 | #1323(E6-2. 1st fl.) | Jul. 10th (Mon), 4pm | Dr. Duk Young Kim Los Alamos National Laboratory |
“Intertwined Orders in a Heavy-fermion metal”
![]() |
131 | Jun. 2 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Euyheon Hwang(황의헌) |
Quasiparticle Interference and Fourier transform scanning tunneling spectroscopy in WTe2 (Weyl semimetal)
![]() |
130 | Jun. 2 (Fri.), 4:00 PM | #1323 (E6-2. 1st fl.) | Dr. Sang Wook Kim |
Maxwell's demon in quantum wonderland
![]() |
129 | May. 12 (Fri.), 01:30 PM | E6-2. 1st fl. #1323 | Dr. Young Kuk Kim | Topological Dirac insulator |
128 | Apr. 27, 2017 (Thu) 4:00 pm | Seminar Room(#1323, E6-2) | Prof.Donghan Lee (Chungnam National Univ.) | 반도체 양자점을 이용한 단광자 광원 |
127 | Apr. 28 (Fri.), 04:00 PM | #1323 (E6-2. 1st fl.) | Dr. Minkyung Jung Research Institute, DGIST | Carbon nanotubes coupled to superconducting impedance matching circuits |
126 | Apr. 28 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. JeongYoung Park Graduate School of EEWS, KAIST | Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion |