visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-04-11 13:30 
일시 April 11 (Wed), 1:30pm 
장소 #1323 (E6-2, 1st fl.) 
연사 Dr. Yongsoo Yang 

Physics Seminar

 

Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level

 

Dr. Yongsoo Yang

Dept. of Physics and Astronomy, UCLA

 

April 11 (Wed), 1:30pm

#1323 (E6-2, 1st fl.)

 

 

Abstract:

Modern science and technology rely on functional materials, and the physical properties of these materials often strongly depend on defects, local disorder, nanoscale heterogeneities, and grain structures at the atomic scale. Traditional crystallography, which is reliant on periodicity, has been the main method for determining crystal structures, but cannot determine defects or other non-crystalline features. My work goes beyond crystallography. Without any prior assumption of underlying structure, atomic electron tomography (AET) is now able to locate the 3D coordinates of individual atoms with picometer precision and with elemental specificity [1-3]. I will show a variety of complex atomic structures with 3D atomic-level details; including grain boundaries, chemical order/disorder, phase boundaries, and anti-site point defects. I will further demonstrate that these experimentally determined atomic structures can be combined with quantum mechanical calculations to provide an atomic-level understanding of physical properties such as 3D strain tensors, magnetic moments and local magnetocrystalline anisotropy. Understanding the relationship between atomic structure and physical properties will open up new avenues in condensed matter physics and allow the rational design of novel materials at the atomic scale [1-2].

[1] Yang et al., Nature 542, 75-79 (2017).

[2] Xu et al., Nature Mater. 14, 1099-1103 (2015).

[3] Pryor*, Yang* et al., Sci. Rep. 7:10409 (2017).

 

Contact: Yongseop Kang, Administration Team (T.2599)

 

Department of Physics

번호 날짜 장소 제목
21 2016-04-26 16:00  #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
20 2017-09-13 16:00  #1323 (E6-2. 1st fl.)  An Introduction to Quantum Spin Liquids file
19 2017-04-28 16:00  #1323 (E6-2. 1st fl.)  Carbon nanotubes coupled to superconducting impedance matching circuits
18 2017-07-14 15:00  #1323 (E6-2. 1st fl.)  Chiral anomaly in disordered Weyl semimetals file
17 2017-06-02 16:00  #1323 (E6-2. 1st fl.)  Maxwell's demon in quantum wonderland file
16 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials
15 2017-09-12 16:00  #1323 (E6-2. 1st fl.)  Exact Solution for the Interacting Kitaev Chain at Symmetric Point file
14 2017-11-28 16:00  #1323 (E6-2. 1st fl.)  Physics after the lab and the desk: Your work in PRL file
13 2019-10-29 10:00  #1323 (E6-2, 1st fl.)  Unconventional Spin Transport in Quantum Materials file
12 2018-04-13 10:00  #1323 (E6-2, 1st fl.)  Quantum meets Mechanics: from Quantum Information to Fundamental Research file
11 2018-04-11 16:00  #1323 (E6-2, 1st fl.)  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
10 2019-10-16 16:00  #1323 (E6-2, 1st fl.)  Emergent black holes and monopoles from quantum fields file
9 2019-10-31 10:00  #1323 (E6-2, 1st fl.)  Kondo meets Hubbard: Impurity physics for correlated lattices file
8 2019-10-29 16:00  #1323 (E6-2, 1st fl.)  Particles and Gravity via String Geometry file
» 2018-04-11 13:30  #1323 (E6-2, 1st fl.)  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
6 2016-06-14 15:00  #1323 (E6-2 1st fl.)  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
5 2017-11-03 16:00  #1323 (1st fl., E6-2.)  Expedition to the Kitaev Quantum Spin Liquid: Hunting for Majorana fermions file
4 2017-11-03 14:30  #1323 (1st fl., E6-2.)  Quantum Resistor-Capacitor Circuit with Majorana Edge States file
3 2017-03-24 14:30  #1323 (1st fl. E6-2).  Topological Dynamics
2 2017-03-24 16:00  #1323 (1st fl. E6-2)  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties