visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Large-scale Silicon Photonic MEMS Switches

2016.09.28 19:50

Physics 조회 수:1615

날짜 2016-09-29 16:00 
일시 Sep. 29th(Thu), 4PM 
장소 E6-2 #1323 (1st floor) 
연사 Dr. Sangyoon Han, Department of Physics, KAIST 

Large-scale Silicon Photonic MEMS Switches


Sep. 29th(Thu), 4PM, E6-2 #1323 (1st floor)

Dr. Sangyoon Han, Department of Physics, KAIST

 

Abstract:

Fast optical-circuit-switches (OCS) having a large number of ports can significantly enhance the performance and the efficiency of modern data centers by actively rearranging network patterns. Commercially available optical switches operating with the use of moving mirror arrays have port counts exceeding 100x100 and insertion losses fewer than a few dBs. However, their switching speeds are typically tens-of-milliseconds which limits their applications in highly dynamic traffic patterns.

Recently, optical switches based on silicon photonics technology have been designed and built. Silicon photonic switches with microsecond or nanosecond response times have been demonstrated, and silicon photonic switches with integrated CMOS driving circuits have been demonstrated. However, the demonstrations were mostly limited to a small number of ports due to their cascaded 2x2 architecture which induces high optical losses as port-count increases. Moreover, the demonstrations were limited to single polarization operations, and narrow spectral bandwidths.

In this talk, I will introduce a new architecture for silicon photonic switches that is highly scalable (optical insertion loss < 1 dB regardless of port-count), polarization-insensitive (< 1dB of PDL), and ultra-broadband (~300nm). The new architecture uses a two-level waveguide-crossbar with moving waveguide couplers that configure light paths. Three experimental implementations of the new architecture with 50x50 ports will be shown in the talk.

 


Biography:

Sangyoon Han is a postdoctoral research associate in the Physics department at KAIST. He received his Ph.D. in Electrical Engineering and Computer Sciences from the University of California, Berkeley in 2016. He received his B.S. in Electrical Engineering from Seoul National University. He was a recipient of Korea Foundation for Advanced Studies Scholarship for study abroad, and he was a recipient of a graduate bronze medal from Collegiate Inventors Competition (USPTO sponsored) in 2015.

번호 날짜 장소 제목
49 2019-11-05 16:00  #1323, E6-2  Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
48 2019-11-07 16:00  #1323, E6-2  Integrated quantum photonics with solid-state quantum emitters file
47 2020-01-17 16:00  #1323, E6-2  Symmetry Breaking and Topology in Superfluid 3He file
46 2020-02-20 16:00  #1323, E6-2  Unconventional superconductivity in the locally non-centrosymmetric heavy-fermion CeRh2As2 file
45 2017-03-02 16:00  #1323(E6-2. 1st fl.)  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
44 2016-04-19 14:00  #1323(E6-2. 1st fl.)  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
43 2016-07-08 11:00  #1323(E6-2. 1st fl.)  Isostatic magnetism
42 2016-07-07 14:00  #1323(E6-2. 1st fl.)  Let there be topological superconductors
41 2016-07-08 14:00  #1323(E6-2. 1st fl.)  Electronic quasiparticles in the quantum dimer model
40 2016-07-28 16:00  #1323(E6-2. 1st fl.)  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
39 2016-11-11 13:30  #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
38 2016-11-11 16:00  #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters
37 2016-11-16 16:00  #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
36 2016-11-24 16:00  #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
35 2016-11-29 16:00  #1323(E6-2. 1st fl.)  Symmetry Protected Kondo Metals and Their Phase Transitions
34 2016-12-8 16:00  #1323(E6-2. 1st fl.)  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
33 2016-12-09 13:30  #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
32 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
31 2016-12-09 16:00  #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
30 2016-05-16 16:00  #1323(E6-2, 1st Fl.)  Tuning microwave cavities with biased nonlinear dielectrics for axion searches