visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Isostatic magnetism

2016.07.04 22:02

Physics 조회 수:1548

날짜 2016-07-08 11:00 
일시 Jul. 08 (Fri.) 11:00 AM 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.) 

Isostatic magnetism

 

Jul. 08 (Fri.) 11:00 AM, #1323(E6-2. 1st fl.)
Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.)

 

Abstract: Recently, a peculiar state of mechanical (phonon) systems, known as isostatic lattices, was both proposed[1] and fabricated as a metamaterial[2]. This state is on the brink of mechanical collapse and remarkably has special topological properties that guarantee the existence of soliton-like zero modes or edge modes with open boundary conditions. It is unlikely these topological phonons will be found in any solid state system since they are not on the brink of mechanical collapse. In this talk, I will discuss my group's research[3] into extending this physics to magnetic systems where ``mechanical collapse'' is replaced with the loss of magnetic order due to frustration.  I will prove mathematically that indeed an isostatic magnetic exists, a proof that remarkably employs a supersymmetry between magnons and an invented fermionic degree of freedom I have dubbed magninos. I will conclude with a discussion of the possibilities of finding an isostatic magnet among the kagome and distorted kagome families of antiferromagnets and the potential new phenomena that may be observed in such a material.


[1] C. L. Kane and T. C. Lubensky, "Topological boundary modes in isostatic lattices", Nature Physics 10, 39 (2013).
[2] B. G. Chen, N. Upadhyaya, V. Vitelli, "Non-linear conduction via solitons in a topological mechanical insulator", PNAS 111, 13004 (2014).
[3] M. J. Lawler "Supersymmetry protected phases of isostatic lattices and kagome antiferromagnets", Unpublished, see arXiv:1510.03697.


Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

번호 날짜 장소 제목
169 2017-09-22 13:00  E6-2. 1st fl. #1323  Superconductor-metal-insulator transition in thin Tantalum films file
168 2017-09-22 14:30  E6-2. 1st fl. #1323  Quantum Electronic Transport in Graphene Hybrid Nanostructures file
167 2017-09-22 16:00  E6-2. 1st fl. #1323  Unexpected Electron-Pairing in Integer Quantum Hall Effect file
166 2018-03-16 14:30  E6-2. 1st fl. #1323  산화물 다층박막에서의 다양한 물리현상 file
165 2018-03-16 14:30  E6-2. 1st fl. #1323  산화물 다층박막에서의 다양한 물리현상 file
164 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
163 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
162 2018-04-09 11:00  E6-2. 1st fl. #1323  Doublon-holon origin of the subpeaks at the Hubbard band edges file
161 2018-05-11 14:30  E6-2. 1st fl. #1323  Disordered Floquet topological insulators file
160 2018-05-11 16:00  E6-2. 1st fl. #1323  암페어 단위 재정의와 단전자 펌프 소자 개발 file
159 2018-05-17 13:30  E6-2. 1st fl. #1323  Quantum Spin Liquid in Kitaev Materials file
158 2018-06-01 11:00  E6-2. 1st fl. #1323  Topological phases in low-dimensional quantum materials file
157 2018-11-09 14:30  E6-2. 1st fl. #1323  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
156 2018-11-09 16:00  E6-2. 1st fl. #1323  Quantum sensing and imaging with diamond defect centers for nano-scale spin physics file
155 2018-12-07 14:30  E6-2. 1st fl. #1323  Spin generation from heat and light in metals file
154 2018-12-07 16:00  E6-2. 1st fl. #1323  Novel probes of interacting electrons in 2D systems file
153 2018-12-11 16:00  E6-2. 1st fl. #1323  Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations file
152 2018-12-16 16:00  E6-2. 1st fl. #1323  Lectures on 2d Conformal Field Theory file
151 2018-12-26 16:00  E6-2. 1st fl. #1323  Brane-like defect in 3D toric code file
150 2018-12-27 16:00  E6-2. 1st fl. #1323  Quantum Innovation (QuIN) Laboratory file