Data-driven interrogation of biological dynamics: from subcellular interactions to neuronal networks in vivo
2022.01.14 17:51
장소 | KI bldg. 5th fl. Room B501 & Zoom |
---|---|
일시 | Jan. 18(Tue), 2pm-3pm |
연사 | YoungJu Jo (Stanford University) |
[Seminar]
18 Jan 2022, Tue, 2pm-3pm, KI bldg. 5th fl. Room B501
Zoom: https://kaist.zoom.us/j/89586032430
회의 ID: 895 860 324 30
Data-driven interrogation of biological dynamics:
from subcellular interactions to neuronal networks in vivo
YoungJu Jo
PhD Candidate in Applied Physics, Deisseroth Laboratory, Stanford University
Biological systems are nonlinear dynamical systems consisting of heterogeneous entities. Understanding the logic of the complex spatiotemporal dynamics in such systems, robustly implementing specific biological functions, may require new approaches beyond the traditional hypothesis-driven experimental designs. Here we present a data-driven approach, enabled by high-throughput experimental and computational technologies, across multiple scales. We first discuss a computational imaging technique for simultaneously visualizing multiple aspects of subcellular dynamics [1, 2], its potential combination with molecular optogenetics to study the cell signaling networks, and the remaining challenges in these systems. Then we turn to neuronal networks in behaving animals where high-dimensional neural population activity could be reliably measured and perturbed over extended time. Synergizing with recent technical advances, we propose and experimentally demonstrate a unified deep learning framework to identify the underlying neural dynamical systems, reverse-engineer the neural computation implemented by the dynamics, and design spatiotemporally patterned optogenetic stimulation for naturalistic manipulation of animal behavior [3]. Application of this framework to the mouse habenular circuitry reveals cell-type-specific reward history coding implemented by line attractor dynamics [4].
References:
1. Jo*, Park* et al. Science Advances 3(8), e1700606, 2017.
2. Jo*, Cho*, Park* et al. Nature Cell Biology 23, 1329–1337, 2021.
3. Jo et al. in preparation.
4. Sylwestrak*, Vesuna*, Jo* et al. in revision.
문의: 박용근 교수 (내선:2514)
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
372 | April 26 (Tue), 4PM | #1323(1st Floor. E6-2) | Dr. Myung-Ho Bae, Korea Research Institute of Standards and Science | Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts |
371 | Nov. 1st (Tue), 10:30AM | #1323(E6-2 1st fl.) | Dr. Gadi Eisenstein, Technion | Time scale dependent dynamics in InAs/InP quantum dot gain media |
370 | Jun 1 (Wed) 4 PM | #1323(E6-2 1st fl.) | Kil-Byoung Chai, Caltech | Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets |
369 | Oct. 27th(Thu) 4PM | #1323(E6-2) | Dr. 이 강 희, KAIST, Mechnical Engineering | Terahertz Metal Optics |
368 | May 16, 2016 (Mon) 4PM | #1323(E6-2, 1st Fl.) | Dr. Daniel Bowring , Fermi National Accelerator Laboratory | Tuning microwave cavities with biased nonlinear dielectrics for axion searches |
367 | May 19 (Thu) 4PM | #1323(E6-2, 1st fl.) | Dr. Heedeuk Shin, POSTECH | Nonlinear/quantum optical effect in silicon nano-photonics |
366 | Sep. 22, 2016(Thu), 3:30 PM | #1323(E6-2, 1st fl.) | Dr. Haiyang Yan (Institute of Nuclear Physics and Chemistry) | Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model |
365 | Jun. 16 (Thu) 4PM | #1323(E6-2, 1st fl.) | Hyochul Kim, Samsung Advanced Institute of Technology | Quantum information processing using quantum dots and photonic crystal cavities |
364 | Sep. 22, 2016(Thu), 3:30 PM | #1323(E6-2, 1st fl.) | Dr. Haiyang Yan (Institute of Nuclear Physics and Chemistry) | Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model |
363 | May 31 (Tue.) 4 PM | #1323(E6-2, 1st fl.) | Dr. Kimin Kim, KAIST | Understanding 3D tokamak physics towards advanced control of toroidal plasma |
362 | Dec. 9(Fri), 4p.m. | #1323(E6-2. 1st fl. | Dr. Kun Woo Kim, KIAS | Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator |
361 | Apr. 19(Tue.), 2PM | #1323(E6-2. 1st fl.) | Prof. Mark Koepke, Department of Physics and Astronomy, West Virginia University, USA | Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability |
360 | Dec. 8(Thu) 4p.m. | #1323(E6-2. 1st fl.) | Dr. Jinhyoung Lee, Hanyang University | Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator |
359 | Jul. 28 (Thu.) 4PM | #1323(E6-2. 1st fl.) | Prof. Johannes Pollanen, Jerry Cowen Chair of Experimental Physics at Michigan State University | Low Dimensional Electrons: On the Road to Hybrid Quantum Systems |
358 | Mar. 2nd (Thu), 4:00 p.m | #1323(E6-2. 1st fl.) | Dr. Jonathan Denlinger, Lawrence Berkeley National Lab | “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems” |
357 | Dec. 9(Fri), 1:30 p.m. | #1323(E6-2. 1st fl.) | Dr. Jae Yoon Cho, POSTECH | Entanglement area law in strongly-correlated systems |
356 | Jul. 08 (Fri.) 2PM | #1323(E6-2. 1st fl.) | Dr. Junhyun Lee, Harvard University | Electronic quasiparticles in the quantum dimer model |
355 | Nov. 29(Tue) 4p.m. | #1323(E6-2. 1st fl.) | Dr. SungBin Lee, KAIST | Symmetry Protected Kondo Metals and Their Phase Transitions |
354 | Nov. 24(Thu) 4p.m. | #1323(E6-2. 1st fl.) | Dr. Jai-Min Choi, Chonbuk National Univiersity | Harmonic oscillator physics with single atoms in a state-selective optical potential |
353 | Jul. 08 (Fri.) 11:00 AM | #1323(E6-2. 1st fl.) | Dr. Michael Lawler(Binghampton Univ. / Cornell Univ.) | Isostatic magnetism |