visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 B501, Room Red, KI bldg. 5nd fl. 
일시 2015/08/04, 11PM 
연사 Dr. Eric Jin Ser Lee(Univ. of Manitoba, Canada) 

Propagation of ultrasound through two- and three-dimensional strongly scattering media

2015/08/04(TUE), 11PM, B501(Room Red, KI bldg. 5nd fl.)
Dr. Eric Jin Ser Lee,  Department of Physics and Astronomy, Univ. of Manitoba, Canada

 

 

During my Ph. D study at the University of Manitoba, I have investigated the propagation of ultrasound through two- and three-dimensional strongly scattering media, with either random or ordered internal structures, through experiments and finite element simulations.  All media investigated have strong scattering resonances, leading to novel transport behaviour. 

 

The two-dimensional samples consist of nylon rods immersed in water.  Nylon fishing lines under tension are used as two-dimensional scatterers.  Note that since the rods are parallel and of uniform diameter, there is negligible scattering of waves out of the plane perpendicular to the rods, so that the system appears two-dimensional from the wave point of view for propagation in this plane.  When nylon rods are surrounded by water, they exhibit strong scattering resonances.  In such an environment, the nylon scattering resonance can couple with the propagating mode through water to create a bandgap.  This is a called hybridization gap.  When the nylon rods are arranged in a triangular lattice to form two-dimensional phononic crystals, very unusual dispersion properties are observed when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency.  This behaviour is attributed to the competition between two co-existing propagating modes, leading to a new method for tuning bandgap properties and adjusting the transmission by orders of magnitude. 

 

The three-dimensional media were fabricated by brazing aluminum beads together to form a disordered porous solid network with either vacuum in the pores.  This system is of particular interest because it has been shown to exhibit Anderson localization of ultrasound.  With such system, the density of states (DOS) was investigated.  It is the number of vibrational states per unit frequency range per unit volume.  The DOS is a fundamental property of any system and can influence not only wave transport but also the possibility of forming localized states.  The DOS was measured by directly counting the modes in the frequency domain.  At intermediate frequencies, the DOS was found to be approximately independent of frequency, while at higher frequencies, the frequency dependence was consistent with traditional DOS models.  Furthermore, the level statistics, which describe the distribution of the separations between neighbour modes in frequency, of the modes was investigated to determine the conditions under which level repulsion occurs.  As the sample becomes larger to have more modes, the modes start to overlap and repel each other so that level repulsion effects become important.  Consequently, the level statistics were observed to become closer to GOE predictions as the sample size increased.  For the last, as there is a transition from diffusive to localized regime around the lower bandgap edge, a transition from GOE to Poisson distribution is observed.

 

Contact: Prof. YongKeun Park, Physics Dept., (yk.park@kaist.ac.kr)

 

 

번호 일시 장소 연사 제목
162 2015/09/07-12/01  E6, 1501  문은국 교수(KAIST) 외  Physics Colloquium : 2015 Fall file
161 2016/03/07-06/13  E6, 1501  Prof. David Helfman(KAIST) 외  Physics Colloquium : 2016 Spring file
160 2015/10/23-12/4 10:30 AM  E6, #1501  Prof. YongKeun Park & Prof. Tae-Young Yoon  How to write a good scientific paper[Open lecture series]
159 2. 28(월),16:00  E6, #1501  김동규교수 (KAIST 물리학과)  Spin-based training of optical microscopes
158 3. 7(월),16:00`  E6, #1501  손석우교수 (서울대 지구환경과학부)  Climate Physics and Modelling(우리말강의)
157 3. 14(월),16:00  E6, #1501  박용근교수 (KAIST 물리학과)  Quantitative phase imaging and artificial intelligence: label-free 3D imaging, classification, and inference
156 3. 21(월),16:00  E6, #1501  이상성교수 (한국천문연구원)  Multi-wavelength Studies on Relativistic Jets from Gamma-ray Bright Active Galactic Nuclei
155 3. 28(월), 16:00  E6, #1501  이준희교수 (UNIST 에너지 및 화학공학부)  Ultimate-density atomic semiconductor via flat bands
154 4. 4(월), 16:00  E6, #1501  김희철교수 (Postech 물리학과)  New paradigms in Quantum Field Theory
153 4. 11(월),16:00  E6, #1501  노재동교수 (서울시립대 물리학과)  Emergence of Statistical Mechanics in Quantum Systems
152 4. 25(월), 16:00  E6, #1501  정영욱 책임연구원 (한국원자력연구원)  Ultrafast electron beam, a tool to explore the nanoscopic world of materials(우리말강의)
151 5. 2(월),16:00  E6, #1501  유상운교수 (한밭대)  What can we learn from the history of science and technology?(우리말강의)
150 5. 9(월),16:00  E6, #1501  김창영교수 (서울대)  Searching for new electronic properties in correlated material flatland
149 5.16(월),16:00  E6, #1501  조규붕교수 (HKUST)  Design synthetic topological matter with atoms and lights
148 5. 23(월),16:00  E6, #1501  김준성교수 (postech 물리학과)  Novel electronic transport in topological van der Waals magnets
147 5. 30(월), 16:00  E6, #1501  공수현교수 (고려대학교 물리학과)  Light manipulation using 2D layered semiconductors
146 July 8(Mon), 14:00  E6, #1322  T. L. M. Guedes (Univ. of Konstanz)  Ultrabroadband squeezed pulses and their relation to relativity file
145 May. 25th (Wed), 14:00  E6 Room(#2501)  Dr. Duk-Hyun Choe(Samsung Advanced Institute of Technology)  Atomic-level insights into ferroelectric switching and preferred orientation of ultrathin hafnia file
144 Nov. 22th (Thur), 15:00  E6 Room(#1323)  Prof. Suprijadi Haryono  Experimental and Computational Study on Physical Properties based on Granular System file
143 May. 8th (Wed), 16:00  E6 Room(#1323)  Jieun Lee  Imaging valley dependent electron transport in 2D semiconductors file