visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-06-16 16:00 
일시 Jun. 16 (Thu) 4PM 
장소 #1323(E6-2, 1st fl.) 
연사 Hyochul Kim, Samsung Advanced Institute of Technology 

“Quantum information processing using quantum dots and photonic crystal cavities”

 

Jun. 16 (Thu) 4PM, #1323(E6-2, 1st fl.)
Hyochul Kim, Samsung Advanced Institute of Technology

 

The ability to interface light with solid-state quantum bits (qubits) is essential for future development of scalable and compact quantum information systems that operate on ultra-fast timescales. Photons act as ideal carriers of quantum information and can serve as an efficient quantum link between matter qubits. Quantum dots (QDs) provide a promising implementation of a matter qubit, which can store quantum information in both excitonic states and highly stable spin states, providing an atom-like system in a semiconductor platform. By coupling these QDs to optical nano-cavities it becomes possible to achieve the strong coupling regime where a QD can modify the cavity spectral response, providing an efficient light-matter interface.
In this talk, I will explain that the qubit state of a photon can be controlled by a single solid-state qubit composed of a QD strongly coupled to a photonic crystal cavity.  The QD acts as a coherently controllable qubit system that conditionally flips the polarization of a photon reflected from the cavity on picosecond timescales, which implements a controlled NOT logic gate between the QD and the incident photon. Furthermore, the spin of a single electron or hole trapped in a charged QD can be used as a solid-state qubit with long coherence time. I will discuss our recent experimental realization of a quantum phase switch using a solid-state spin confined in a QD strongly coupled to a photonic crystal cavity, where the switch applies a spin-dependent phase shift on a photon.


Contact: Yoonsoo Kim (T.2599)

번호 날짜 장소 제목
85 2018-10-18 16:00  #1323, E6-2  Applications of nonlinear optics for condensed matter researches file
84 2018-11-29 16:00  #1323, E6-2  양자 칸델라 실현을 위한 단일 광자 발생장치 개발 file
83 2019-10-17 16:00  #1323, E6-2  Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
82 2018-05-29 16:00  #1323, E6-2  Investigation on metal nanostructure/semiconductor junction and its applications file
81 2019-09-26 16:00  #1323, E6-2  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
80 2018-10-25 16:00  #1323, E6-2  Abelian and non-Abelian dark photons file
79 2018-07-27 13:30  #1323, E6-2  Magnetic reversal of artificial spin ice file
78 2018-07-27 13:30  #1323, E6-2  Magnetic reversal of artificial spin ice file
77 2019-11-07 16:00  #1323, E6-2  Integrated quantum photonics with solid-state quantum emitters file
76 2018-10-26 16:00  #1323, E6-2  Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates file
75 2018-11-08 16:00  #1323, E6-2  Conformality lost file
74 2019-10-29 14:30  #1323, E6-2  Quantum sensing file
73 2018-09-05 16:00  #1323, E6-2  Shining a light on fractional excitations file
72 2019-12-03 16:00  #1323, E6-2  Toward Quantum Materials with Correlated Oxides file
71 2020-02-20 16:00  #1323, E6-2  Unconventional superconductivity in the locally non-centrosymmetric heavy-fermion CeRh2As2 file
70 2018-10-18 10:00  #1323, E6-2  Understanding membrane protein folding using single-molecule force techniques file
69 2019-08-22 16:00  #1323, E6-2  Physics and Applications in Nanoelectronics and Nonomechanics file
68 2019-07-30 16:00  #1323, E6-2  Dirac fermions and flat bands in correlated kagome metals file
67 2019-06-04 17:00  #1323, E6-2  Stochastic nature of bacterial eradication using antibiotics file
66 2019-04-19 11:00  #1323, E6-2  First-principles studies of semiconductors for solar cell applications file