visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2021-06-11 14:30 
일시 Jun. 11 (Fri.), 02:30 PM 
장소 Online seminar 
연사 Dr. Jin Woong Cha(KRISS) 

 

SRC Seminar

 

 

Engineering sound waves and vibrations in multi-mode nanomechanical systems

 

Dr. Jin Woong Cha

Quantum Technology Institute, KRISS

 

Jun. 11 (Fri.), 02:30 PM

Online seminar

https://kaist.zoom.us/j/89283252628
회의 ID: 892 8325 2628

암호: 916514

 

 

 

 

Abstract:

Nanoscale mechanical systems provide versatile physical interfaces with their ability to interact with various physical states, for example, electromagnetic fields (e.g., microwaves and optical light) and quantum states (e.g., spins and electrons). Therefore, engineering nanoscale sound waves and vibrations in nanomechanical systems is essential for a wide range of applications in sensing and information processing both in the classical and quantum regimes. My talk will focus on two different nanomechanical platforms I have recently worked on. In the first part of my talk, I will discuss a unique nanomechanical platform called nanomechanical lattices which enable electrically tunable phonon propagation dynamics [1] and topologically protected phonon transport [2] at MHz frequencies. This platform consists of arrays of mechanically coupled, free-standing silicon-nitride nanomechanical membranes that support propagating flexural elastic waves. For the second part of my talk, I will describe our recent studies on the cavity electromechanics in a superconducting nanoelectromechanical resonator implementing superconducting niobium [3]. This system demonstrates various optomechanical phenomena arising from the interaction of nanomechanical motions and microwave fields (e.g., phonon cooling and amplification, optomechanically induced reflection) and can be used in various applications such as quantum transducers. I will then conclude my talk by briefly describing our ongoing work at KRISS.

 

Reference:

[1] J. Cha, et al. Nature Nanotechnology 13, 1016-1020 (2018)

[2] J. Cha, et al. Nature 564, 229-233 (2018)

[3] J. Cha, et al. Nano Letters 21, 1800-1806 (2021)

 

 

Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

 

번호 날짜 장소 제목
105 2016-10-17 11:00  #1323,(E6-2, 1st fl.)  IMS and examples of the studies on optoelectronic materials
104 2018-10-19 10:00  #1323, E6-2  Energy conversion processes during magnetic reconnection in a laboratory plasma file
103 2018-10-04 16:00  #1323, E6-2  Engineering light absorption in an ultrathin semiconductor metafilm file
102 2018-05-31 16:00  #1323, E6-2  Dynamic control of optical properties with gated-graphene metamaterials file
101 2019-12-05 16:00  #1323, E6-2  Subwavelenth Photonic Devices: From Single Photon Sources to Solar Cell file
100 2019-10-15 16:00  #1323, E6-2  Moiré superlattices and graphene quasicrystal file
99 2019-11-05 16:00  #1323, E6-2  Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
98 2018-10-16 10:00  #1323, E6-2  Capturing protein cluster dynamics and gene expression output in live cells file
97 2018-11-01 16:00  #1323, E6-2  Direct holography from a single snapshot file
96 2018-11-21 15:00  #1323, E6-2  Engineering topological quantum physics at the atomic scale file
95 2018-05-09 16:00  #1323, E6-2  Recent advances in thermoelectric bulk composites file
94 2018-10-11 16:00  #1323, E6-2  Dirac electrons in a graphene quasicrystal file
93 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file
92 2019-09-18 16:00  #1323, E6-2  Exploring Synthetic Quantum Matter in Superconducting Circuits file
91 2019-12-18 16:00  #1323, E6-2  Road to Higher Tc Superconductivity file
90 2019-10-25 15:00  #1323, E6-2  Physics Seminar file
89 2019-11-28 16:00  #1323, E6-2  Generation of coherent EUV emissions using ultrashort laser pulses file
88 2019-11-14 16:00  #1323, E6-2  Semi-classical model of polariton propagation file
87 2018-06-22 16:00  #1323, E6-2  Tuning functional properties of BiFeO3 films using strain and growth chemistry file
86 2018-06-22 16:00  #1323, E6-2  Tuning functional properties of BiFeO3 films using strain and growth chemistry file