visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-05-19 15:00 
일시 May 19, 2016 (Thur.) 3PM 
장소 May 19, 2016 (Thur.) 3PM, 
연사 Dr. Michael Betz, CERN 

 

The CERN Resonant WISP Search: Development, Results and Lesson-Learned

   

May 19, 2016 (Thur.) 3PM, #5318(E6-2, 5th fl.)

Dr. Michael Betz, CERN

   

Weakly Interacting Sub-eV Particles (WISPs) could reveal the composition of cold dark matter in the universe and explain a large number of astrophysical phenomena. Despite their strong theoretical motivation, these hypothetical particles could not be observed in any experiment so far.

The "CERN Resonant WISP Search"(CROWS) probes the existence of WISPs using microwave techniques.

The heart of the table-top experiment are two high-Q microwave cavity resonators. The `emitting cavity` is driven by a power amplifier at 3 GHz, resulting in the build-up of a strong electromagnetic field inside. The `receiving cavity` is placed in close vicinity and connected to a sensitive microwave receiver.

Most theories predict a weak coupling between the two cavities due to a Photon to WISP conversion process. CROWS tries to observe that coupling, while mitigating electromagnetic crosstalk with a high-end (~ 300 dB) electromagnetic shielding enclosure for the receiving part of the experiment.

Although no WISPs were detected in the most sensitive measurement-runs in 2013, a previously unexplored region in the parameter space was opened up. For `Hidden Sector Photons`, a prominent member of the WISP family, the result corresponds to an improvement in sensitivity over the previous laboratory exclusion limit by a factor of ~7.

This talk shall give a brief introduction to WISPs, the experimental search efforts worldwide and then focus on the design and development of the CROWS experiment, which happened in the framework of the authors PhD.

The encountered engineering challenges and their solutions will be highlighted. This includes the high performance EMI shielding ( 300 dB through several layers), operating electronics in strong (3 T) magnetic fields, optical signal transmission and high sensitivity (P < 1E-24 W) microwave signal detection. The operation procedure and the lessons learned during various experimental runs are shown. Furthermore, several ideas are proposed, on how to improve the experiment and its sensitivity further.

 

Contact: T.8166(CAPP Administration Office)

번호 날짜 장소 제목
289 2023-09-18 11:00  E6-2, #1322  Magic polarisation trapping of polar molecules for tunable dipolar interactions file
288 2023-11-30 10:30  E6-2, #1322  [High-Energy Theory Seminar] 3d-3d correspondence and 2d N = (0,2) boundary conditions
287 2023-11-09 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Assessing the Capability of Near-Term Photonic Devices Towards Quantum Supremacy
286 2023-11-16 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Electric-field control of emergent phenomena in correlated oxide thin films
285 2023-11-23 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Deciphering the Enigma of Quantum Materials by X-ray Scattering and Spectroscopy
284 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
283 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
282 2022-01-17 14:00  E6-2 Room 2502  Five Lectures on Observational Probes of Dark Energy file
281 2020-11-12 16:00  E6-2 1323  2020 가을학기 광학분야 특별세미나
280 2024-05-16 14:30  E6-2 #2502 & Zoom  [Astrophysics Seminar] Observational Cosmology with Superconducting Sensors
279 2022-08-08 14:00  E6-2 #2502  Classical Shadow Tomography for Analog Quantum Simulators
278 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
277 2024-05-01 16:00  E6-2 #2502  [High Energy Theory Seminar] Across the Mass Spectrum: Utilizing Small-Scale Structures to Probe Dark Matters
276 2024-03-13 16:00  E6-2 #2502  [High-Energy Theory Seminar] The Schwarzschild Black Hole from Perturbation Theory to all Orders
275 2024-03-20 16:00  E6-2 #2502  [High-Energy Theory Seminar] Black hole states at finite N
274 2024-05-08 16:30  E6-2 #2502  [High Energy Theory Seminar] Black Holes from Heavy Operators in N=4 SYM
273 2023-07-14 11:00  E6-2 #1501  Interfaces engineering of thin film oxides
272 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
271 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
270 2017-10-10 16:00  E6-2 #1323  Discovery of New 2D Materials with Diverse Physical Properties