visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-11-04 13:30 
연사  
장소 E6-2. #1323(1st fl.) 

Exotic phenomena at oxide LaAlO3/SrTiO3 hetero-interface and their applications


Nov. 04 (Fri), 1:30 PM

E6-2. #1323(1st fl.)

Dr. Jonghyun Song, Department of Physics, Chungnam National University


Abstract:
great attentions. Here we report the fabrication of spintronics devices based upon the interface ferromagnetism of LaAlO3/SrTiO3 (LAO/STO) heterostructures. The choice of the LAO/STO structure was inspired by its high-mobility two-dimensional electron gas and a number of experimental investigations revealing the spin ordering at this oxide interface. However, the possibility and mechanisms of this interfacial magnetism are still debated and the spin degree of freedom has not yet been employed adequately. The spin injection in the device in this study is enabled by an appropriately thin epitaxial Ti interlayer. Tunnelling magnetoresistance (TMR) is observed and shows such a strong in-plane anisotropy that the sign changes with the direction of applied magnetic field. This may be due to the strong Rashba-type spin-orbit coupling and the tetragonal domain configuration in the LAO/STO heterointerface. These new findings provide evidence of the interface ferromagnetism of the LAO/STO system, open up possible applications of the spin degree of freedom in the oxide heterointerfaces, and give insight into the interfacial ferromagnetic properties of complex oxide-heterostructures. Our polarity-tunable MTJs pave the way for oxide-based spintronics, in which the spin transport plays a crucial role. Furthermore, we also anticipate that these results may stimulate pursuit of two-dimensional ferromagnetism at oxide interfaces.

 

1. Thach D.N. Ngo, Jung-Won Chang, Kyujoon Lee, Seungju Han, Joon Sung Lee, Young Heon Kim, Myung-Hwa Jung, Yong-Joo Doh, Mahn-Soo Choi, Jonghyun Song, and Jinhee Kim, ‘Polarity-tunable magnetic tunnel junctions based on ferromagnetism at oxide heterointerfaces’, Nature Communications, 6, 8035(2015).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
454 2018-05-17 13:30    Quantum Spin Liquid in Kitaev Materials file
453 2018-05-29 16:00    Investigation on metal nanostructure/semiconductor junction and its applications file
452 2018-05-31 16:00    Dynamic control of optical properties with gated-graphene metamaterials file
451 2018-06-01 11:00    Topological phases in low-dimensional quantum materials file
450 2018-06-14 10:00    Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation file
449 2018-06-18 10:00    Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms file
448 2018-06-22 10:00    Success in Research Career file
447 2018-06-22 16:00    Tuning functional properties of BiFeO3 films using strain and growth chemistry file
446 2018-07-02 15:00    High Precision Magnetic Field Measurement for the Muon g-2 Experiment file
445 2018-07-09 14:00    The principles of collective learning file
444 2018-07-12 17:00    The MilliQan Experiment: Search for Milli-Charged Particles at the LHC
443 2018-07-13 14:00    Loop Induced Single Top Partner Production and Decay at the LHC
442 2018-07-26 14:00    Inflation in String Theory and Backreaction file
441 2018-07-27 13:30    Magnetic reversal of artificial spin ice file
440 2018-07-27 15:00    Muon g-2 in the 2HDM and MSSM: comprehensive numerical analysis and absolute maxima file
439 2018-08-01 11:00    Future of AI: Is the brain a computer? file
438 2018-09-04 14:30    Ultrafast time- and angle-resolved photoemission spectroscopy (tr-ARPES) with extreme ultraviolet laser pulses file
437 2018-09-05 16:00    Shining a light on fractional excitations file
436 2018-09-07 15:00    Recent developments in density functional theory: From new functionals to the nature of the chemical bond file
435 2018-09-20 16:00    Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file