visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-05-24 16:00 
일시 May 24 (Tue) 4 PM 
장소 E6-2. #1323(1st fl.) 
연사 Dr. Euyheon Hwang, SKKU Advanced Institute of Nanotechnology, Sung Kyung Kwan University 

Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density

 

May 24 (Tue) 4 PM, E6-2. #1323(1st fl.)
Dr. Euyheon Hwang, SKKU Advanced Institute of Nanotechnology, Sung Kyung Kwan University

 

We present the electronic and magnetic properties of two dimensional (2D) MPX3 (M= transition metal, and X = S, Se, Te) transition metal thiophosphates. The MPX3 are layered van der Waals materials and exhibit novel magnetic order as a single layer. Our calculations of the magnetic ground states in MPX3 single layer compounds predict semiconducting phases with variable band gap sizes down to metallic phases depending on their magnetic orders. A systematic trend of decreasing band gaps in antiferromagnetic states is observed as the chalcogen atoms S, Se, and Te change from smaller to larger atomic number, whereas diverse ground-state phases, e.g., ferromagnetic, antiferromagnetic, and nonmagnetic phases can be expected for different compounds which are accompanied by variations in the lattice constants, and non-negligible distortions in crystal symmetries. In addition, the antiferromagnetic semiconductors of MPX3 single layer show the transition to the ferromagnetic halfmetals with both electron and hole doping, which can be controlled by applying an external gate voltage in the MPX3 field effect transistors (FET). We find that the itinerant d electrons in transition metals induce the ferromagnetic to antiferromagnetic transition accompanied by the metal to semiconductor transition. The sensitive interdependence between the magnetic, structural, and electronic properties suggest important potential of 2D magnetic van der Waals materials for strain and field-effect carrier tunable spintronics.

 

Contact: Sungjae Cho, Physics Dept., (sungjae.cho@kaist.ac.kr)

번호 날짜 장소 제목
402 2023-07-20 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP Seminar] Cosmoparticle Physics of Dark Universe file
401 2022-07-21 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Quintessential axions file
400 2022-09-21 16:00  College of Natural Science E6-2, Rm. 1323  Materials and Device Nanofabrication of Optical Metasurfaces file
399 2015-03-13 14:00  Connect Room, KI Bldg.  The 15th Innovative Workshop on Soft/Bio Materials file
398 2015-12-09 11:00  E4(KI Building), Connect room (2nd fl.)  Functional Imaging & Monitoring of Brain & Breast with Diffuse Light
397 2015-12-17 11:00  E4(KI Building), Matrix Hall (2nd fl.)  Wavefront engineering for in-vivo Deep brain imaging
396 2015-07-23 13:30  E4, B401  Enhanced ZnO based UV photonics and related applications file
395 2023-05-17 14:00  E6 #1323  Optical Response in the multilayer thin films
394 2023-04-28 11:00  E6 #1323  Tkachenko wave: From the modern field theory viewpoint
393 2022-10-06 13:00  E6 #1323  Counting States with Global Symmetry
392 2022-04-13 10:30  E6 #1323/zoom  Harnessing topology and correlations from singularities in 3d-kagome metals
391 2022-01-11 15:00  E6 #1501  Ultrafast optical studies on CDW collective modes of the Weyl-CDW (TaSe4)2I file
390 2022-01-26 13:00  E6 #1501  An Introduction to Cohomology groups file
389 2022-07-14 14:15  E6 #1501 & Zoom  Hund and electronic correlations in ruthenium-based systems
388 2022-08-01 10:00  E6 #1501 & Zoom  [Update 세미나 영상] James Webb Space Telescope & OTE Commissioning
387 2022-07-14 13:30  E6 #1501 & Zoom  Electronic structure and anomalous transport properties of topological materials by first principle calculation
386 2022-07-14 15:00  E6 #1501 & Zoom  Pure two-dimensional quantum electron liquid and its phase transition
385 2022-10-24 16:00  E6 #1501(공동강의실)  Physics Colloquim(Fall 2022) file
384 2022-01-25 15:00  E6 #1501/online  Emulating twisted double bilayer graphene with a multiorbital optical lattice file
383 2022-03-31 10:00  E6 #1501/zoom  Weiss fields for Quantum Spin Dynamics file