visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-04-19 14:00 
일시 Apr. 19(Tue.), 2PM 
장소 #1323(E6-2. 1st fl.) 
연사 Prof. Mark Koepke, Department of Physics and Astronomy, West Virginia University, USA 

Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability

 

Apr. 19(Tue.), 2PM, #1323(E6-2. 1st fl.)
Prof. Mark Koepke, Department of Physics and Astronomy, West Virginia University, USA

 

The local plasma generation, structure, and stability at one location and time can be unexpectedly influenced by “nonlocal” electron transport and heating effects attributed to conditions, processes, and boundaries many energy-relaxation scale lengths away in another part of the plasma. Nonlocal effects are attributed to electric-field sampling by a traversing electron across disparate regional plasma conditions when the electron energy relaxation length is larger than or comparable to the scale length of plasma inhomogeneity. As a result, the entire electric-field profile, including sheaths, striations, and filamentation, rather than the local electric field strength, determines spatiotemporal electron current and heating, even in collisional plasma. Non-equilibrium, nonlocal properties make partially ionized plasma, which is strongly affected also by the presence of neutral species, a solid surface, particulates, or a liquid, a remarkable tool for manufacturing (of semiconductor chips, solar and plasma-display panels, and plasma sources for particle beams), for the treatment of organic and bio-objects/materials, and for nanotechnology. A promising approach for improved control of the local quantities plasma density, electron temperature, and electron and ion energy distribution functions (EEDF, IEDF) exploits the peculiarities of nonlocal effects on these characteristic plasma parameters. Nonlocal collisional electron transport effects are important for understanding and applying atmospheric-pressure plasma jets, micro-discharges, and low pressure plasma discharges not only to the pursuit of the discovery plasma frontier but also to technology used everyday.

번호 날짜 장소 제목
165 2019-11-01 14:30  E6-2. 1st fl. #1323  Squeezing the best out of 2D materials file
164 2018-12-07 16:00  E6-2. 1st fl. #1323  Novel probes of interacting electrons in 2D systems file
163 2018-06-01 11:00  E6-2. 1st fl. #1323  Topological phases in low-dimensional quantum materials file
162 2017-09-22 16:00  E6-2. 1st fl. #1323  Unexpected Electron-Pairing in Integer Quantum Hall Effect file
161 2016-10-18 15:00  E6-2. 1st fl. #1323  “Hybrid quantum systems with mechanical oscillators”
160 2019-09-27 16:00  E6-2. 1st fl. #1323  0D/1D/2D/3D III-V materials grown by MBE for Optelectronics file
159 2018-11-09 16:00  E6-2. 1st fl. #1323  Quantum sensing and imaging with diamond defect centers for nano-scale spin physics file
158 2018-05-17 13:30  E6-2. 1st fl. #1323  Quantum Spin Liquid in Kitaev Materials file
157 2018-12-27 16:00  E6-2. 1st fl. #1323  Quantum Innovation (QuIN) Laboratory file
156 2018-11-09 14:30  E6-2. 1st fl. #1323  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
155 2017-04-28 14:30  E6-2. 1st fl. #1323  Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion
154 2016-04-12 16:00  E6-2. 1st fl. #1323  Confinement of Superconducting Vortices in Magnetic Force Microscopy
153 2018-12-11 16:00  E6-2. 1st fl. #1323  Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations file
152 2017-09-22 13:00  E6-2. 1st fl. #1323  Superconductor-metal-insulator transition in thin Tantalum films file
151 2018-10-12 14:30  E6-2. 1st fl. #1323  Quantum Advantage in Learning Parity with Noise file
150 2019-11-01 16:00  E6-2. 1st fl. #1323  Electron transport through weak-bonded contact metal with low dimensional nano-material file
149 2017-09-22 14:30  E6-2. 1st fl. #1323  Quantum Electronic Transport in Graphene Hybrid Nanostructures file
148 2017-05-12 13:30  E6-2. 1st fl. #1323  Topological Dirac insulator
147 2019-09-27 14:30  E6-2. 1st fl. #1323  Spin-charge conversion in topological insulators for spintronic applications file
146 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file